Suppr超能文献

释放用于高能水系锌离子电池的钒基化合物

Unleashing Vanadium-Based Compounds for High-Energy Aqueous Zinc-Ion Batteries.

作者信息

Zafar Saad, Lochab Bimlesh

机构信息

Materials Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh 201314, India.

Advanced Chemical Energy Research Center, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, 240-8501 Yokohama, Kanagawa, Japan.

出版信息

ACS Omega. 2024 Nov 26;9(49):47920-47938. doi: 10.1021/acsomega.4c06199. eCollection 2024 Dec 10.

Abstract

Rechargeable aqueous zinc-ion batteries (ZIBs) are poised as a promising solution for large-scale energy storage and portable electronic applications. Their appeal lies in their affordability, abundant materials, high safety standards, acceptable energy density, and eco-friendliness. Vanadium-based compounds stand out as potential cathode materials due to their versatile phases and variable crystal structures, empowering design flexibility to affect the theoretical capacity. However, challenges, such as V dissolution and substantial capacity degradation, have hindered their widespread use. Recent breakthroughs in crafting innovative V-based materials for aqueous ZIBs, by preintercalating guest species, have significantly bolstered structural stability and facilitated faster charge migration, leading to enhanced capacity and stable cycling. This review delves into the latest advancements in vanadium-based cathodes with preintercalated guest species, examining their altered crystal structures and the mechanisms involved in Zn ion storage. It also investigates how different guest materials within these cathodes impact the electrochemical capacity. Additionally, this assessment identifies key obstacles impeding progress and proposes potential solutions while also anticipating the future trajectory of aqueous ZIBs. These insights are invaluable to researchers and manufacturers alike, offering a roadmap for commercialization.

摘要

可充电水系锌离子电池(ZIBs)有望成为大规模储能和便携式电子应用的理想解决方案。它们的吸引力在于价格实惠、材料丰富、安全标准高、能量密度可接受以及环保。钒基化合物因其多样的相和可变的晶体结构而成为潜在的阴极材料,赋予了影响理论容量的设计灵活性。然而,诸如钒溶解和大量容量衰减等挑战阻碍了它们的广泛应用。最近,通过预嵌入客体物种来制备用于水系锌离子电池的创新型钒基材料取得了突破,显著增强了结构稳定性并促进了更快的电荷迁移,从而提高了容量并实现了稳定的循环。本文综述深入探讨了预嵌入客体物种的钒基阴极的最新进展,研究了它们改变的晶体结构以及锌离子存储所涉及的机制。还研究了这些阴极内不同的客体材料如何影响电化学容量。此外,本评估确定了阻碍进展的关键障碍并提出了潜在的解决方案,同时预测了水系锌离子电池的未来发展轨迹。这些见解对研究人员和制造商都非常宝贵,为商业化提供了路线图。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0821/11635494/932d3130b8d7/ao4c06199_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验