Suppr超能文献

用于高速水系锌离子电池的面向隧道的VO(B)阴极

Tunnel-Oriented VO (B) Cathode for High-Rate Aqueous Zinc-Ion Batteries.

作者信息

He Qian, Hu Tao, Wu Qiang, Wang Cheng, Han Xuran, Chen Zibo, Zhu Yuwei, Chen Jianyu, Zhang Yu, Shi Li, Wang Xuebin, Ma Yanwen, Zhao Jin

机构信息

State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.

National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China.

出版信息

Adv Mater. 2024 Jun;36(25):e2400888. doi: 10.1002/adma.202400888. Epub 2024 Mar 25.

Abstract

Tunnel-type vanadium oxides are promising cathodes for aqueous zinc ion batteries. However, unlike layer-type cathodes with adjustable layer distances, enhancing ion-transport kinetics in tunnels characterized by fixed sizes poses a considerable challenge. This study highlights that the macroscopic arrangement of the electrode crucially determines tunnel orientation, thereby influencing ion transport. By changing the material morphology, the tunnel orientation can be optimized to facilitate rapid ion diffusion. In a proof-of-concept demonstration, it is revealed that (00l) facets-dominated VO (B) nanobelts with dispersive morphology (VO-D) tend to adopt a stacking pattern with directional ion transport along the c-axis on the electrode and guarantee fast ion diffusion. Compared with the aggregated sample (VO-A) that tends to random arrangement on the electrode with isotropic and slow ion transfer behavior, the electrode featuring dispersive (00l) facets-dominated VO (B) nanobelts displays directional and fast ion diffusion behavior, thus exhibits an ultrahigh-rate performance (420.8 and 344.8 mAh g at 0.1 and 10 A g, respectively) and long cycling stability (84.3% capacity retention under 5000 cycles at 10 A g). The results suggest that simultaneous manipulation of exposed crystal facet and morphology-related electrode arrangement should be promising for boosting the ion-transport kinetics in tunnel-type vanadium oxide cathodes.

摘要

隧道型钒氧化物是水系锌离子电池中很有前景的正极材料。然而,与层间距可调节的层状正极不同,在尺寸固定的隧道结构中提高离子传输动力学是一项相当大的挑战。本研究强调电极的宏观排列对隧道取向起关键决定作用,从而影响离子传输。通过改变材料形态,可以优化隧道取向以促进快速离子扩散。在一个概念验证演示中,结果表明具有分散形态的(00l)面主导的VO(B)纳米带(VO-D)在电极上倾向于采用沿c轴方向进行离子传输的堆叠模式,并保证快速离子扩散。与在电极上倾向于随机排列且具有各向同性和缓慢离子转移行为的聚集样品(VO-A)相比,以分散的(00l)面主导的VO(B)纳米带为特征的电极表现出定向且快速的离子扩散行为,因此展现出超高倍率性能(在0.1和10 A g时分别为420.8和344.8 mAh g)以及长循环稳定性(在10 A g下5000次循环后容量保持率为84.3%)。结果表明,同时控制暴露的晶面和与形态相关的电极排列对于提高隧道型钒氧化物正极中的离子传输动力学应该是有前景的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验