Ferrero Diego Sebastian, Gimenez María Cecilia, Sagar Amin, Rodríguez Javier María, Castón José R, Terebiznik Mauricio R, Bernadó Pau, Verdaguer Nuria
Institut de Biologia Molecular de Barcelona, CSIC, Parc Científic de Barcelona, Baldiri i Reixac 15, 08028 Barcelona, Spain.
Department of Biological Sciences, University of Toronto at Scarborough, Toronto, ON M1C 1A4, Canada.
PNAS Nexus. 2024 Nov 20;3(12):pgae521. doi: 10.1093/pnasnexus/pgae521. eCollection 2024 Dec.
To overcome their limited genetic capacity, numerous viruses encode multifunctional proteins. The birnavirus VP3 protein plays key roles during infection, including scaffolding of the viral capsid during morphogenesis, recruitment, and regulation of the viral RNA polymerase, shielding of the double-stranded RNA genome and targeting of host endosomes for genome replication, and immune evasion. The dimeric form of VP3 is critical for these functions. In previous work, we determined the X-ray structure of the central domains (D2-D3) of VP3 from the infectious bursal disease virus (IBDV). However, the structure and function of the IBDV VP3 N-terminal domain (D1) could not be determined at that time. Using integrated structural biology approaches and functional cell assays, here we characterize the IBDV VP3 D1 domain, unveiling its unexplored roles in virion stability and infection. The X-ray structure of D1 shows that this domain folds in four α-helices arranged in parallel dimers, which are essential for maintaining the dimeric arrangement of the full-length protein. Combining small-angle X-ray scattering analyses with molecular dynamics simulations allowed us to build a structural model for the D1-D3 domains. This model consists of an elongated structure with high flexibility in the D2-D3 connection, keeping D1 as the only driver of VP3 dimerization. Using reverse genetics tools, we show that the obliteration of D1 domain prevents the VP3 scaffold function during capsid assembly and severely impacts IBDV infection. Altogether, our study elucidates the structure of the VP3 D1 domain and reveals its role in VP3 protein dimerization and IBDV infection.
为了克服其有限的遗传能力,许多病毒编码多功能蛋白。双RNA病毒VP3蛋白在感染过程中发挥关键作用,包括在形态发生过程中作为病毒衣壳的支架、募集和调节病毒RNA聚合酶、保护双链RNA基因组以及将宿主内体靶向用于基因组复制,以及免疫逃避。VP3的二聚体形式对这些功能至关重要。在之前的工作中,我们确定了传染性法氏囊病病毒(IBDV)VP3中央结构域(D2-D3)的X射线结构。然而,当时无法确定IBDV VP3 N端结构域(D1)的结构和功能。在这里,我们使用综合结构生物学方法和功能性细胞试验对IBDV VP3 D1结构域进行了表征,揭示了其在病毒粒子稳定性和感染中尚未被探索的作用。D1的X射线结构表明,该结构域由四个α螺旋折叠成平行二聚体,这对于维持全长蛋白的二聚体排列至关重要。将小角X射线散射分析与分子动力学模拟相结合,使我们能够构建D1-D3结构域的结构模型。该模型由一个在D2-D3连接处具有高灵活性的细长结构组成,使D1成为VP3二聚化的唯一驱动因素。使用反向遗传学工具,我们表明D1结构域的缺失会阻止衣壳组装过程中VP3的支架功能,并严重影响IBDV感染。总之,我们的研究阐明了VP3 D1结构域的结构,并揭示了其在VP3蛋白二聚化和IBDV感染中的作用。