Suppr超能文献

高效的多表型全基因组分析确定了与无监督深度学习衍生的高维脑成像表型的遗传关联。

Efficient multi-phenotype genome-wide analysis identifies genetic associations for unsupervised deep-learning-derived high-dimensional brain imaging phenotypes.

作者信息

Guo Bohong, Xie Ziqian, He Wei, Islam Sheikh Muhammad Saiful, Gottlieb Assaf, Chen Han, Zhi Degui

机构信息

Department of Biostatistics & Data Science, School of Public Health, University of Texas Health Science Center, Houston, Texas 77030, USA.

Department of Bioinformatics and Systems Medicine, McWilliams School of Biomedical Informatics, University of Texas Health Science Center, Houston, Texas 77030, USA.

出版信息

medRxiv. 2024 Dec 8:2024.12.06.24318618. doi: 10.1101/2024.12.06.24318618.

Abstract

Brain imaging is a high-content modality that offers dense insights into the structure and pathology of the brain. Existing genetic association studies of brain imaging, typically focusing on a number of individual image-derived phenotypes (IDPs), have successfully identified many genetic loci. Previously, we have created a 128-dimensional Unsupervised Deep learning derived Imaging Phenotypes (UDIPs), and identified multiple loci from single-phenotype genome-wide association studies (GWAS) for individual UDIP dimensions, using data from the UK Biobank (UKB). However, this approach may miss genetic associations where one single nucleotide polymorphism (SNP) is moderately associated with multiple UDIP dimensions. Here, we present Joint Analysis of multi-phenotype GWAS (JAGWAS), a new tool that can efficiently calculate multivariate association statistics using single-phenotype summary statistics for hundreds of phenotypes. When applied to UDIPs of T1 and T2 brain magnetic resonance imaging (MRI) on discovery and replication cohorts from the UKB, JAGWAS identified 195/168 independently replicated genomic loci for T1/T2, 6 times more than those from the single-phenotype GWAS. The replicated loci were mapped into 555/494 genes, and 217/188 genes overlapped with the expression quantitative trait loci (eQTL) of brain tissues. Gene enrichment analysis indicated that the genes mapped are closely related to neurobiological functions. Our results suggested that multi-phenotype GWAS is a powerful approach for genetic discovery using high-dimensional UDIPs.

摘要

脑成像作为一种高内涵模式,能为大脑结构和病理学提供深入见解。现有的脑成像遗传关联研究通常聚焦于一些从图像衍生的个体表型(IDP),并已成功识别出许多基因位点。此前,我们创建了一个128维的无监督深度学习衍生成像表型(UDIP),并利用英国生物银行(UKB)的数据,针对单个UDIP维度从单表型全基因组关联研究(GWAS)中识别出多个位点。然而,这种方法可能会遗漏单核苷酸多态性(SNP)与多个UDIP维度中度相关的遗传关联。在此,我们介绍多表型GWAS联合分析(JAGWAS),这是一种新工具,它可以使用数百个表型的单表型汇总统计数据高效计算多变量关联统计量。当应用于来自UKB的发现和复制队列的T1和T2脑磁共振成像(MRI)的UDIP时,JAGWAS为T1/T2识别出195/168个独立复制的基因组位点,是单表型GWAS识别位点数量的6倍。这些复制的位点被定位到555/494个基因中,其中217/188个基因与脑组织的表达数量性状位点(eQTL)重叠。基因富集分析表明,定位到的基因与神经生物学功能密切相关。我们的结果表明,多表型GWAS是一种利用高维UDIP进行遗传发现的强大方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adb5/11643246/920b9341b41e/nihpp-2024.12.06.24318618v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验