Rakowski Alexander, Monti Remo, Lippert Christoph
Digital Health Machine Learning, Hasso Plattner Institute for Digital Engineering, University of Potsdam, Germany.
Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany.
PLoS Genet. 2024 Dec 13;20(12):e1011332. doi: 10.1371/journal.pgen.1011332. eCollection 2024 Dec.
Genome-wide association studies (GWAS) traditionally analyze single traits, e.g., disease diagnoses or biomarkers. Nowadays, large-scale cohorts such as UK Biobank (UKB) collect imaging data with sample sizes large enough to perform genetic association testing. Typical approaches to GWAS on high-dimensional modalities extract predefined features from the data, e.g., volumes of regions of interest. This limits the scope of such studies to predefined traits and can ignore novel patterns present in the data. TransferGWAS employs deep neural networks (DNNs) to extract low-dimensional representations of imaging data for GWAS, eliminating the need for predefined biomarkers. Here, we apply transferGWAS on brain MRI data from UKB. We encoded 36, 311 T1-weighted brain magnetic resonance imaging (MRI) scans using DNN models trained on MRI scans from the Alzheimer's Disease Neuroimaging Initiative, and on natural images from the ImageNet dataset, and performed a multivariate GWAS on the resulting features. We identified 289 independent loci, associated among others with bone density, brain, or cardiovascular traits, and 11 regions having no previously reported associations. We fitted polygenic scores (PGS) of the deep features, which improved predictions of bone mineral density and several other traits in a multi-PGS setting, and computed genetic correlations with selected phenotypes, which pointed to novel links between diffusion MRI traits and type 2 diabetes. Overall, our findings provided evidence that features learned with DNN models can uncover additional heritable variability in the human brain beyond the predefined measures, and link them to a range of non-brain phenotypes.
全基因组关联研究(GWAS)传统上分析单一性状,例如疾病诊断或生物标志物。如今,诸如英国生物银行(UKB)这样的大规模队列收集了样本量足够大的成像数据,足以进行基因关联测试。针对高维模态的GWAS典型方法是从数据中提取预定义特征,例如感兴趣区域的体积。这将此类研究的范围限制在预定义性状上,并且可能忽略数据中存在的新模式。TransferGWAS使用深度神经网络(DNN)为GWAS提取成像数据的低维表示,从而无需预定义生物标志物。在此,我们将TransferGWAS应用于来自UKB的脑MRI数据。我们使用在阿尔茨海默病神经影像倡议的MRI扫描以及来自ImageNet数据集的自然图像上训练的DNN模型,对36,311次T1加权脑磁共振成像(MRI)扫描进行编码,并对所得特征进行多变量GWAS。我们确定了289个独立位点,其中一些与骨密度、大脑或心血管性状相关,以及11个以前未报告过关联的区域。我们拟合了深度特征的多基因分数(PGS),在多PGS设置中改善了骨矿物质密度和其他几个性状的预测,并计算了与选定表型的遗传相关性,这指出了扩散MRI性状与2型糖尿病之间的新联系。总体而言,我们的研究结果提供了证据,表明用DNN模型学习的特征可以揭示人类大脑中超出预定义测量的额外遗传变异性,并将它们与一系列非脑表型联系起来。