Li Wenqiang, Wang Xia, Liu Jiaming, Li Shuai, Li Nan, Hu Huizhu
College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China.
Quantum Sensing Center, Zhejiang Lab, Hangzhou 310000, China.
Nanophotonics. 2023 Feb 28;12(7):1245-1253. doi: 10.1515/nanoph-2022-0625. eCollection 2023 Apr.
Introducing rotational degree of control into conventional optical tweezers promises unprecedented possibilities in physics, optical manipulation, and life science. However, previous rotational schemes have largely relied upon the intrinsic properties of microsphere anisotropy-such as birefringence or amorphous shape-which involves sophisticated fabrication processes and is limited in their application range. In this study, we demonstrated the first experimental realization of orbiting a homogeneous microsphere by exploiting angular momentum in a transversely rotating optical trap. The high level of rotational control allows us to explore orbital-translational coupling and realize an ultra-stable micro-gyroscope of considerable value. The dynamics of orbital levitated particle was theoretically characterized using a simple model. Our proposed method provided a novel way to qualitatively characterize optical trap features. In the future, the approach could pave the way for investigating rotational opto-mechanics, rotational ground state cooling, and the study of ultra-sensitive angular measurement.
将旋转控制程度引入传统光镊技术,有望在物理学、光学操控和生命科学领域带来前所未有的可能性。然而,以往的旋转方案在很大程度上依赖于微球各向异性的固有特性,如双折射或无定形形状,这涉及复杂的制造工艺,且应用范围有限。在本研究中,我们通过利用横向旋转光阱中的角动量,首次实现了均匀微球的轨道运动实验。高度的旋转控制使我们能够探索轨道 - 平移耦合,并实现具有相当价值的超稳定微陀螺仪。利用一个简单模型从理论上描述了轨道悬浮粒子的动力学。我们提出的方法为定性表征光阱特性提供了一种新途径。未来,该方法可为研究旋转光力学、旋转基态冷却以及超灵敏角测量研究铺平道路。