Department of Mechanical Engineering and Texas Materials Institute , The University of Texas at Austin , Austin , Texas 78712 , United States.
Acc Chem Res. 2018 Jun 19;51(6):1465-1474. doi: 10.1021/acs.accounts.8b00102. Epub 2018 May 25.
Optical manipulation techniques are important in many fields. For instance, they enable bottom-up assembly of nanomaterials and high-resolution and in situ analysis of biological cells and molecules, providing opportunities for discovery of new materials, medical diagnostics, and nanomedicines. Traditional optical tweezers have their applications limited due to the use of rigorous optics and high optical power. New strategies have been established for low-power optical manipulation techniques. Optothermal manipulation, which exploits photon-phonon conversion and matter migration under a light-controlled temperature gradient, is one such emerging technique. Elucidation of the underlying physics of optothermo-matter interaction and rational engineering of optical environments are required to realize diverse optothermal manipulation functionalities. This Account covers the working principles, design concepts, and applications of a series of newly developed optothermal manipulation techniques, including bubble-pen lithography, opto-thermophoretic tweezers, opto-thermoelectric tweezers, optothermal assembly, and opto-thermoelectric printing. In bubble-pen lithography, optical heating of a plasmonic substrate generates microbubbles at the solid-liquid interface to print diverse colloidal particles on the substrates. Programmable bubble printing of semiconductor quantum dots on different substrates and haptic control of printing have also been achieved. The key to optothermal tweezers is the ability to deliver colloidal particles from cold to hot regions of a temperature gradient or a negative Soret effect. We explore different driving forces for the two types of optothermal tweezers. Opto-thermophoretic tweezers rely on an abnormal permittivity gradient built by structured solvent molecules in the electric double layer of colloidal particles and living cells in response to heat-induced entropy, and opto-thermoelectric tweezers exploit a thermophoresis-induced thermoelectric field for the low-power manipulation of small nanoparticles with minimum diameter around 20 nm. Furthermore, by incorporating depletion attraction into the optothermal tweezers system as particle-particle or particle-substrate binding force, we have achieved bottom-up assembly and reconfigurable optical printing of artificial colloidal matter. Beyond optothermal manipulation techniques in liquid environments, we also review recent progress of gas-phase optothermal manipulation based on photophoresis. Photophoretic trapping and transport of light-absorbing materials have been achieved through optical engineering to tune particle-molecule interactions during optical heating, and a novel optical trap display has been demonstrated. An improved understanding of the colloidal response to temperature gradients will surely facilitate further innovations in optothermal manipulation. With their low-power operation, simple optics, and diverse functionalities, optothermal manipulation techniques will find a wide range of applications in life sciences, colloidal science, materials science, and nanoscience, as well as in the developments of colloidal functional devices and nanomedicine.
光学操控技术在许多领域都很重要。例如,它们能够实现纳米材料的自下而上组装以及生物细胞和分子的高分辨率和原位分析,为新材料的发现、医学诊断和纳米医学提供了机会。由于需要使用严格的光学器件和高光学功率,传统的光镊技术的应用受到限制。已经建立了新的低功率光学操控技术策略。光热操控技术就是一种新兴技术,它利用光控温度梯度下的光子-声子转换和物质迁移。阐明光热物质相互作用的基础物理,并合理设计光学环境,是实现各种光热操控功能所必需的。本综述涵盖了一系列新型光热操控技术的工作原理、设计理念和应用,包括气泡笔光刻、光热电泳镊子、光热电泳镊子、光热组装和光热电印刷。在气泡笔光刻中,等离子体衬底的光学加热在固液界面处产生微泡,从而在衬底上打印各种胶体颗粒。已经实现了在不同衬底上的可编程气泡打印和打印的触觉控制。光热镊子的关键是能够将胶体颗粒从温度梯度的冷区输送到热区,或者利用负 Soret 效应。我们探索了两种光热镊子的不同驱动力。光热电泳镊子依赖于胶体颗粒和活细胞在电双层中结构化溶剂分子的异常介电常数梯度,该梯度是由热诱导的熵引起的,而光热电泳镊子则利用热泳诱导的热电场来操控直径最小约为 20nm 的小纳米颗粒。此外,通过将耗尽吸引纳入光热镊子系统作为粒子-粒子或粒子-衬底结合力,我们已经实现了基于自下而上组装和可重构光学打印的人工胶体的组装和可重构光学打印。除了在液体环境中的光热操控技术外,我们还回顾了基于光致发光的气相光热操控的最新进展。通过光学工程实现了光吸收材料的光致捕获和输运,以调整光学加热过程中的颗粒-分子相互作用,并展示了一种新型的光学陷阱显示。对胶体对温度梯度的响应的进一步理解必将促进光热操控的进一步创新。光热操控技术具有低功耗、简单光学器件和多样化功能,将在生命科学、胶体科学、材料科学和纳米科学领域以及胶体功能器件和纳米医学的发展中得到广泛应用。