Michael Raul, Modirzadeh Tallah, Issa Tahir Bachar, Jurney Patrick
bioRxiv. 2024 Dec 2:2024.11.26.625487. doi: 10.1101/2024.11.26.625487.
Understanding the physiological processes underlying age-related cardiovascular disease (CVD) requires examination of endothelial cell (EC) mitochondrial networks, because mitochondrial function and adenosine triphosphate production are crucial in EC metabolism, and consequently influence CVD progression. Although current biochemical assays and immunofluorescence microscopy can reveal how mitochondrial function influences cellular metabolism, they cannot achieve live observation and tracking changes in mitochondrial networks through fusion and fission events. Holotomographic microscopy (HTM) has emerged as a promising technique for real-time, label-free visualization of ECs and their organelles, such as mitochondria. This non-destructive, non-interfering live cell imaging method offers unprecedented opportunities to observe mitochondrial network dynamics. However, because existing image processing tools based on immunofluorescence microscopy techniques are incompatible with HTM images, a machine-learning model is required. Here, we developed a model using a U-net learner with a Resnet18 encoder to identify four classes within HTM images: mitochondrial networks, cell borders, ECs, and background. This method accurately identifies mitochondrial structures and positions. With high accuracy and similarity metrics, the output image successfully provides visualization of mitochondrial networks within HTM images of ECs. This approach enables the study of mitochondrial networks and their effects, and holds promise in advancing understanding of CVD mechanisms.
了解与年龄相关的心血管疾病(CVD)背后的生理过程需要检查内皮细胞(EC)的线粒体网络,因为线粒体功能和三磷酸腺苷的产生在EC代谢中至关重要,进而影响CVD的进展。尽管目前的生化分析和免疫荧光显微镜可以揭示线粒体功能如何影响细胞代谢,但它们无法通过融合和裂变事件实现对线粒体网络变化的实时观察和追踪。全息断层显微镜(HTM)已成为一种有前景的技术,可用于对EC及其细胞器(如线粒体)进行实时、无标记的可视化。这种无损、非干扰性的活细胞成像方法为观察线粒体网络动态提供了前所未有的机会。然而,由于基于免疫荧光显微镜技术的现有图像处理工具与HTM图像不兼容,因此需要一个机器学习模型。在这里,我们开发了一个使用带有Resnet18编码器的U-net学习器的模型,以识别HTM图像中的四类对象:线粒体网络、细胞边界、EC和背景。该方法能够准确识别线粒体的结构和位置。通过高精度和相似性指标,输出图像成功地在EC的HTM图像中实现了线粒体网络的可视化。这种方法能够研究线粒体网络及其影响,有望推动对CVD机制的理解。