Suppr超能文献

使用全息断层显微镜和U-Net对内皮细胞线粒体进行无标记可视化和分割

Label-Free Visualization and Segmentation of Endothelial Cell Mitochondria Using Holotomographic Microscopy and U-Net.

作者信息

Michael Raul, Modirzadeh Tallah, Issa Tahir Bachar, Jurney Patrick

机构信息

San Jose State University, Biomedical Engineering Department, San Jose, California 95112-3613, United States.

San Jose State University, Department of Mathematics and Statistics, San Jose, California 95112-3613, United States.

出版信息

Chem Biomed Imaging. 2025 Feb 18;3(4):225-231. doi: 10.1021/cbmi.4c00100. eCollection 2025 Apr 28.

Abstract

Understanding the physiological processes underlying cardiovascular disease (CVD) requires examination of endothelial cell (EC) mitochondrial networks, because mitochondrial function and adenosine triphosphate production are crucial in EC metabolism, and consequently influence CVD progression. Although current biochemical assays and immunofluorescence microscopy can reveal how mitochondrial function influences cellular metabolism, they cannot achieve live observation and tracking changes in mitochondrial networks through fusion and fission events. Holotomographic microscopy (HTM) has emerged as a promising technique for real-time, label-free visualization of ECs and their organelles, such as mitochondria. This nondestructive, noninterfering live cell imaging method offers unprecedented opportunities to observe mitochondrial network dynamics. However, because existing image processing tools based on immunofluorescence microscopy techniques are incompatible with HTM images, a machine-learning model is required. Here, we developed a model using a U-net learner with a Resnet18 encoder to identify four classes within HTM images: mitochondrial networks, cell borders, ECs, and background. This method accurately identifies mitochondrial structures and positions. With high accuracy and similarity metrics, the output image successfully provides visualization of mitochondrial networks within HTM images of ECs. This approach enables the study of mitochondrial networks and their effects, and holds promise in advancing understanding of CVD mechanisms.

摘要

了解心血管疾病(CVD)背后的生理过程需要检查内皮细胞(EC)的线粒体网络,因为线粒体功能和三磷酸腺苷的产生在EC代谢中至关重要,进而影响CVD的进展。尽管目前的生化分析和免疫荧光显微镜可以揭示线粒体功能如何影响细胞代谢,但它们无法实现对线粒体网络通过融合和分裂事件的实时观察和跟踪变化。全息断层显微镜(HTM)已成为一种有前景的技术,可用于实时、无标记地可视化EC及其细胞器,如线粒体。这种无损、非干扰的活细胞成像方法为观察线粒体网络动态提供了前所未有的机会。然而,由于基于免疫荧光显微镜技术的现有图像处理工具与HTM图像不兼容,因此需要一个机器学习模型。在这里,我们使用带有Resnet18编码器的U-net学习器开发了一个模型,以识别HTM图像中的四类:线粒体网络、细胞边界、EC和背景。该方法能够准确识别线粒体结构和位置。通过高精度和相似性指标,输出图像成功地提供了EC的HTM图像中线粒体网络的可视化。这种方法能够研究线粒体网络及其影响,并有望促进对CVD机制的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6e3/12042131/62b44b93ff09/im4c00100_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验