Suppr超能文献

AutoMitoNetwork:用于分析自发荧光图像中线粒体网络的软件,可实现无标记细胞分类。

AutoMitoNetwork: Software for analyzing mitochondrial networks in autofluorescence images to enable label-free cell classification.

机构信息

ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), University of New South Wales, Sydney, New South Wales, Australia.

The Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia.

出版信息

Cytometry A. 2024 Sep;105(9):688-703. doi: 10.1002/cyto.a.24889. Epub 2024 Jul 30.

Abstract

High-resolution mitochondria imaging in combination with image analysis tools have significantly advanced our understanding of cellular function in health and disease. However, most image analysis tools for mitochondrial studies have been designed to work with fluorescently labeled images only. Additionally, efforts to integrate features describing mitochondrial networks with machine learning techniques for the differentiation of cell types have been limited. Herein, we present AutoMitoNetwork software for image-based assessment of mitochondrial networks in label-free autofluorescence images using a range of interpretable morphological, intensity, and textural features. To demonstrate its utility, we characterized unstained mitochondrial networks in healthy retinal cells and in retinal cells exposed to two types of treatments: rotenone, which directly inhibited mitochondrial respiration and ATP production, and iodoacetic acid, which had a milder impact on mitochondrial networks via the inhibition of anaerobic glycolysis. For both cases, our multi-dimensional feature analysis combined with a support vector machine classifier distinguished between healthy cells and those treated with rotenone or iodoacetic acid. Subtle changes in morphological features were measured including increased fragmentation in the treated retinal cells, pointing to an association with metabolic mechanisms. AutoMitoNetwork opens new options for image-based machine learning in label-free imaging, diagnostics, and mitochondrial disease drug development.

摘要

高分辨率线粒体成像与图像分析工具相结合,极大地促进了我们对健康和疾病状态下细胞功能的理解。然而,大多数用于线粒体研究的图像分析工具仅设计用于处理荧光标记的图像。此外,将描述线粒体网络的特征与机器学习技术相结合以区分细胞类型的努力也受到限制。本文介绍了 AutoMitoNetwork 软件,该软件可用于使用一系列可解释的形态学、强度和纹理特征,对无标记自发荧光图像中的线粒体网络进行基于图像的评估。为了展示其效用,我们对健康视网膜细胞和暴露于两种处理方式(鱼藤酮,其直接抑制线粒体呼吸和 ATP 产生;碘乙酸,其通过抑制无氧糖酵解对线粒体网络产生更温和的影响)的视网膜细胞中的未染色线粒体网络进行了特征描述。在这两种情况下,我们的多维特征分析与支持向量机分类器相结合,可区分健康细胞和用鱼藤酮或碘乙酸处理的细胞。我们测量了形态特征的细微变化,包括处理后的视网膜细胞中碎片化增加,这表明与代谢机制有关。AutoMitoNetwork 为无标记成像、诊断和线粒体疾病药物开发中的基于图像的机器学习开辟了新的选择。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验