Peterson Kelvin J, Slepchenko Boris M, Loew Leslie M
R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT USA.
bioRxiv. 2024 Dec 5:2024.12.04.626844. doi: 10.1101/2024.12.04.626844.
Biochemical interactions at membranes are the starting points for cell signaling networks. But bimolecular reaction kinetics are difficult to experimentally measure on 2-dimensional membranes and are usually measured in volumetric assays. Membrane tethering produces confinement and steric effects that will significantly impact binding rates in ways that are not readily estimated from volumetric measurements. Also, there are situations when 2D reactions do not conform to simple kinetics. Here we show how highly coarse-grained molecular simulations using the SpringSaLaD software can be used to estimate membrane- tethered rate constants from experimentally determined volumetric kinetics. The approach is validated using an analytical solution for dimerization of binding sites anchored via stiff linkers. This approach can provide 2-dimensional bimolecular rate constants to parameterize cell-scale models of receptor-mediated signaling. We explore how factors such as molecular reach, steric effects, disordered domains, local concentration and diffusion affect the kinetics of binding. We find that for reaction-limited cases, the key determinant in converting 3D to 2D rate constant is the distance of the binding sites from the membrane. On the other hand, the mass action rate law may no longer be obeyed for diffusion-limited reaction on surfaces; the simulations reveal when this situation pertains. We then apply our approach to epidermal growth factor receptor (EGFR) mediated activation of the membrane-bound small GTPase Ras. The analysis reveals how prior binding of Ras to the allosteric site of SOS, a guanine nucleotide exchange factor (GEF) that is recruited to EGFR, significantly accelerates its catalytic activity.
膜上的生化相互作用是细胞信号网络的起点。但双分子反应动力学在二维膜上很难通过实验测量,通常是在体积测定中进行测量。膜 tethering 会产生限制和空间效应,这些效应会以体积测量难以轻易估算的方式显著影响结合速率。此外,在某些情况下,二维反应并不符合简单的动力学。在这里,我们展示了如何使用 SpringSaLaD 软件进行的高度粗粒度分子模拟,从实验确定的体积动力学中估计膜 tethered 速率常数。该方法通过对通过刚性连接子锚定的结合位点二聚化的解析解进行了验证。这种方法可以提供二维双分子速率常数,以参数化受体介导信号传导的细胞尺度模型。我们探讨了诸如分子作用范围、空间效应、无序结构域、局部浓度和扩散等因素如何影响结合动力学。我们发现,对于反应受限的情况,将三维速率常数转换为二维速率常数的关键决定因素是结合位点与膜的距离。另一方面,表面上的扩散受限反应可能不再遵循质量作用速率定律;模拟揭示了这种情况何时适用。然后,我们将我们的方法应用于表皮生长因子受体(EGFR)介导的膜结合小 GTP 酶 Ras 的激活。分析揭示了 Ras 与 SOS(一种被招募到 EGFR 的鸟嘌呤核苷酸交换因子(GEF))的变构位点的先前结合如何显著加速其催化活性。