Suppr超能文献

基于EcoTyper机器学习框架的单细胞和批量RNA测序综合分析鉴定出与胃癌预后相关的细胞状态特异性M2巨噬细胞标志物。

Integrated Analysis of Single-Cell and Bulk RNA-Sequencing Based on EcoTyper Machine Learning Framework Identifies Cell-State-Specific M2 Macrophage Markers Associated with Gastric Cancer Prognosis.

作者信息

Zhu A-Kao, Li Guang-Yao, Chen Fang-Ci, Shan Jia-Qi, Shan Yu-Qiang, Lv Chen-Xi, Zhu Zhi-Qiang, He Yi-Ren, Zhai Lu-Lu

机构信息

Department of Colorectal Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, People's Republic of China.

Department of General Surgery, The Second People's Hospital of Wuhu, Wuhu, 241000, People's Republic of China.

出版信息

Immunotargets Ther. 2024 Dec 11;13:721-734. doi: 10.2147/ITT.S490075. eCollection 2024.

Abstract

BACKGROUND

Tumor is a complex and dynamic ecosystem formed by the interaction of numerous diverse cells types and the microenvironments they inhabit. Determining how cellular states change and develop distinct cellular communities in response to the tumor microenvironment is critical to understanding cancer progression. Tumour-associated macrophages (TAMs) are an important component of the tumour microenvironment and play a crucial role in cancer progression. This study was designed to identify cell-state-specific M2 macrophage markers associated with gastric cancer (GC) prognosis through integrative analysis of single-cell RNA sequencing (scRNA-seq) and bulk RNA-seq data using a machine learning framework named EcoTyper.

RESULTS

The results showed that TAMs were classified into M1 macrophages, M2 macrophages, monocytes, undefined macrophages and dendritic cells, with M2 macrophages predominating. EcoTyper assigned macrophages to different cell states and ecotypes. A total of 168 cell-state-specific M2 macrophage markers were obtained by integrative analysis of scRNA-seq and bulk RNA-seq data. These markers could categorize GC patients into two clusters (clusters A and B) with different survival and M2 macrophages infiltration abundance. Cell adhesion molecules, cytokine-cytokine receptor interaction, JAK/STAT pathway, MAPK pathway were significantly enriched in cluster A, which had worse survival and higher M2 macrophages infiltration.

CONCLUSION

In conclusion, this study profiles a single-cell atlas of intratumor heterogeneity and defines the cell states and ecotypes of TAMs in GC. Furthermore, we have identified prognostically relevant cell-state-specific M2 macrophage markers. These findings provide novel insights into the tumor ecosystem and cancer progression.

摘要

背景

肿瘤是一个复杂且动态的生态系统,由众多不同细胞类型及其所处的微环境相互作用形成。确定细胞状态如何响应肿瘤微环境而发生变化并发展出不同的细胞群落,对于理解癌症进展至关重要。肿瘤相关巨噬细胞(TAM)是肿瘤微环境的重要组成部分,在癌症进展中起关键作用。本研究旨在通过使用名为EcoTyper的机器学习框架对单细胞RNA测序(scRNA-seq)和批量RNA测序(bulk RNA-seq)数据进行综合分析,来鉴定与胃癌(GC)预后相关的细胞状态特异性M2巨噬细胞标志物。

结果

结果显示,TAM被分为M1巨噬细胞、M2巨噬细胞、单核细胞、未定义巨噬细胞和树突状细胞,其中M2巨噬细胞占主导。EcoTyper将巨噬细胞分配到不同的细胞状态和生态类型。通过对scRNA-seq和bulk RNA-seq数据的综合分析,共获得了168个细胞状态特异性M2巨噬细胞标志物。这些标志物可将GC患者分为两个具有不同生存率和M2巨噬细胞浸润丰度的簇(簇A和簇B)。细胞粘附分子、细胞因子-细胞因子受体相互作用、JAK/STAT通路、MAPK通路在生存率较差且M2巨噬细胞浸润较高的簇A中显著富集。

结论

总之,本研究描绘了肿瘤内异质性的单细胞图谱,并定义了GC中TAM的细胞状态和生态类型。此外,我们还鉴定了与预后相关的细胞状态特异性M2巨噬细胞标志物。这些发现为肿瘤生态系统和癌症进展提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52b8/11646439/b57fba7c05d8/ITT-13-721-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验