Thayamkottu Sandeep, Smallman T Luke, Pärn Jaan, Mander Ülo, Euskirchen Eugénie S, Kane Evan S
Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise Street. 46, 51003 Tartu, Estonia.
School of GeoSciences, The University of Edinburgh, Edinburgh EH9 3FF, United Kingdom.
Agric For Meteorol. 2024 Dec 15;359:110261. doi: 10.1016/j.agrformet.2024.110261.
Boreal peatlands store vast amounts of soil organic carbon (C) owing to the imbalance between productivity and decay rates. In the recent decades, this carbon stock has been exposed to a warming climate. During the past decade alone, the Arctic has warmed by ∼ 0.75°C which is almost twice the rate of the global average. Although, a wide range of studies have assessed peatlands' C cycling, our understanding of the factors governing source / sink dynamics of peatland C stock under a warming climate remains a critical uncertainty at site, regional, and global scales. Here our focus was on answering two key questions: (1) What drives the interannual variability of carbon dioxide (CO) fluxes at the Bonanza Creek rich fen in Alaska, and (2) What are the internal carbon allocation patterns during the study years? We addressed these knowledge-gaps using an intermediate complexity terrestrial ecosystem model calibrated by a Bayesian model-data fusion framework at a weekly timestep with publicly available eddy covariance, satellite-based earth observation, and in-situ datasets for 2014 to 2020. We found that the greening trend (a relative increase of leaf area index ∼0.12 m m by 2020) in the fen ecosystem is forced by a CO fertilisation effect which in combination resulted in increased gross primary production (GPP). Relative to 2014, GPP increased by ∼75 gC m year (by 2020; 95% confidence interval (CI): -41.35 gC m year to 213.55 gC m year) while heterotrophic respiration stayed constant. Consistent with the observed greening, our analysis indicates that the ecosystem allocated more C to foliage (∼50%) over the structural (A carbon pool consisting of branches, stems and coarse roots; ∼30%) and fine root C pools (∼20%).
由于生产力与腐烂速率之间的不平衡,北方泥炭地储存了大量的土壤有机碳(C)。在最近几十年里,这种碳储量一直受到气候变暖的影响。仅在过去十年中,北极地区就升温了约0.75°C,几乎是全球平均升温速率的两倍。尽管已有大量研究评估了泥炭地的碳循环,但我们对在气候变暖情况下控制泥炭地碳储量源/汇动态的因素的理解,在局部、区域和全球尺度上仍然是一个关键的不确定性因素。在这里,我们的重点是回答两个关键问题:(1)是什么驱动了阿拉斯加博南扎溪富营养化湿地二氧化碳(CO)通量的年际变化,以及(2)在研究年份中内部碳分配模式是怎样的?我们使用一个中等复杂程度的陆地生态系统模型来填补这些知识空白,该模型通过贝叶斯模型-数据融合框架进行校准,时间步长为每周一次,使用了公开可用的涡度协方差数据、基于卫星的地球观测数据以及2014年至2020年的现场数据集。我们发现,湿地生态系统中的绿化趋势(到2020年叶面积指数相对增加约0.12 m²/m²)是由二氧化碳施肥效应驱动的,这共同导致了总初级生产力(GPP)的增加。相对于2014年,GPP增加了约75 gC/m²·年(到2020年;95%置信区间(CI):-41.35 gC/m²·年至213.55 gC/m²·年),而异养呼吸保持不变。与观测到的绿化情况一致,我们的分析表明,生态系统分配到叶片的碳更多(约50%),而分配到结构碳库(一个由树枝、茎和粗根组成的碳库;约30%)和细根碳库(约20%)的碳较少。