Xiu Yingling, Lin Zhi, Pan Mian
Department of Obstetrics and Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University Fuzhou 350001, Fujian, China.
Am J Transl Res. 2024 Nov 15;16(11):6500-6509. doi: 10.62347/TNWA5229. eCollection 2024.
To identify the factors influencing spontaneous preterm birth (SPTB) and develop a prediction model for clinical practice.
This retrospective study included a total of 130 pregnant women with spontaneous preterm birth or full-term delivery at Fujian Maternity and Child Health Hospital between January 2020 and December 2023. The SPTB group consisted of 50 women with spontaneous preterm birth, while the full-term group included 70 women with full-term deliveries. Logistic regression analysis was performed to explore the factors associated with clinical prognosis, and a nomogram prediction model for SPTB risk was constructed and validated.
Multivariate logistic regression analysis identified multiple pregnancies (95% CI: 1.415-8.926, P=0.006), abnormal fetal position (95% CI: 1.124-2.331, P=0.008), gestational diabetes (95% CI: 4.918-19.164, P=0.002), mode of conception (95% CI: 1.765-4.285,P=0.002), lower genital tract infection (95% CI: 1.076-2.867, P=0.032), and second trimester cervical length (95% CI: 1.071-2.991, P=0.031) as independent risk factors of SPTB. Using these six variables, a nomogram was developed to predict the incidence of SPTB, with an AUC value of 0.833 (95% CI: 0.665-0.847), demonstrating acceptable agreement between predicted and observed outcomes. Decision curve analysis (DCA) showed a good positive net benefit of the model.
Multiple pregnancies, abnormal fetal position, gestational diabetes, mode of conception, lower genital tract infection, and second-trimester cervical length are independent risk factors for the onset of SPTB. In addition, the nomogram prediction model demonstrated good predictive performance, high accuracy, and clinical applicability.
确定影响自发性早产(SPTB)的因素,并开发一种用于临床实践的预测模型。
这项回顾性研究共纳入了2020年1月至2023年12月期间在福建省妇幼保健院发生自发性早产或足月分娩的130名孕妇。SPTB组由50名自发性早产妇女组成,而足月组包括70名足月分娩的妇女。进行逻辑回归分析以探索与临床预后相关的因素,并构建和验证了SPTB风险的列线图预测模型。
多因素逻辑回归分析确定多胎妊娠(95%CI:1.415 - 8.926,P = 0.006)、胎位异常(95%CI:1.124 - 2.331,P = 0.008)、妊娠期糖尿病(95%CI:4.918 - 19.164,P = 0.002)、受孕方式(95%CI:1.765 - 4.285,P = 0.002)、下生殖道感染(95%CI:1.076 - 2.867,P = 0.032)和孕中期宫颈长度(95%CI:1.071 - 2.991,P = 0.031)为SPTB的独立危险因素。使用这六个变量开发了一个列线图来预测SPTB的发生率,AUC值为0.833(95%CI:0.665 - 0.847),表明预测结果与观察结果之间具有可接受的一致性。决策曲线分析(DCA)显示该模型具有良好的正净效益。
多胎妊娠、胎位异常、妊娠期糖尿病、受孕方式、下生殖道感染和孕中期宫颈长度是SPTB发病的独立危险因素。此外,列线图预测模型表现出良好的预测性能、高准确性和临床适用性。