Suppr超能文献

自发性早产风险预测模型的开发与验证

Development and validation of a risk prediction model for spontaneous preterm birth.

作者信息

Xiu Yingling, Lin Zhi, Pan Mian

机构信息

Department of Obstetrics and Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University Fuzhou 350001, Fujian, China.

出版信息

Am J Transl Res. 2024 Nov 15;16(11):6500-6509. doi: 10.62347/TNWA5229. eCollection 2024.

Abstract

OBJECTIVES

To identify the factors influencing spontaneous preterm birth (SPTB) and develop a prediction model for clinical practice.

METHODS

This retrospective study included a total of 130 pregnant women with spontaneous preterm birth or full-term delivery at Fujian Maternity and Child Health Hospital between January 2020 and December 2023. The SPTB group consisted of 50 women with spontaneous preterm birth, while the full-term group included 70 women with full-term deliveries. Logistic regression analysis was performed to explore the factors associated with clinical prognosis, and a nomogram prediction model for SPTB risk was constructed and validated.

RESULTS

Multivariate logistic regression analysis identified multiple pregnancies (95% CI: 1.415-8.926, P=0.006), abnormal fetal position (95% CI: 1.124-2.331, P=0.008), gestational diabetes (95% CI: 4.918-19.164, P=0.002), mode of conception (95% CI: 1.765-4.285,P=0.002), lower genital tract infection (95% CI: 1.076-2.867, P=0.032), and second trimester cervical length (95% CI: 1.071-2.991, P=0.031) as independent risk factors of SPTB. Using these six variables, a nomogram was developed to predict the incidence of SPTB, with an AUC value of 0.833 (95% CI: 0.665-0.847), demonstrating acceptable agreement between predicted and observed outcomes. Decision curve analysis (DCA) showed a good positive net benefit of the model.

CONCLUSIONS

Multiple pregnancies, abnormal fetal position, gestational diabetes, mode of conception, lower genital tract infection, and second-trimester cervical length are independent risk factors for the onset of SPTB. In addition, the nomogram prediction model demonstrated good predictive performance, high accuracy, and clinical applicability.

摘要

目的

确定影响自发性早产(SPTB)的因素,并开发一种用于临床实践的预测模型。

方法

这项回顾性研究共纳入了2020年1月至2023年12月期间在福建省妇幼保健院发生自发性早产或足月分娩的130名孕妇。SPTB组由50名自发性早产妇女组成,而足月组包括70名足月分娩的妇女。进行逻辑回归分析以探索与临床预后相关的因素,并构建和验证了SPTB风险的列线图预测模型。

结果

多因素逻辑回归分析确定多胎妊娠(95%CI:1.415 - 8.926,P = 0.006)、胎位异常(95%CI:1.124 - 2.331,P = 0.008)、妊娠期糖尿病(95%CI:4.918 - 19.164,P = 0.002)、受孕方式(95%CI:1.765 - 4.285,P = 0.002)、下生殖道感染(95%CI:1.076 - 2.867,P = 0.032)和孕中期宫颈长度(95%CI:1.071 - 2.991,P = 0.031)为SPTB的独立危险因素。使用这六个变量开发了一个列线图来预测SPTB的发生率,AUC值为0.833(95%CI:0.665 - 0.847),表明预测结果与观察结果之间具有可接受的一致性。决策曲线分析(DCA)显示该模型具有良好的正净效益。

结论

多胎妊娠、胎位异常、妊娠期糖尿病、受孕方式、下生殖道感染和孕中期宫颈长度是SPTB发病的独立危险因素。此外,列线图预测模型表现出良好的预测性能、高准确性和临床适用性。

相似文献

4
First trimester cervical angles for the prediction of spontaneous preterm birth.孕早期宫颈角度对自发性早产的预测作用
Eur J Obstet Gynecol Reprod Biol. 2025 Apr;307:21-28. doi: 10.1016/j.ejogrb.2024.12.036. Epub 2025 Jan 22.
10
Uterocervical angle as a predictor of spontaneous preterm birth in twin pregnancies.子宫颈管角度预测双胎妊娠自发性早产的价值。
J Matern Fetal Neonatal Med. 2022 May;35(10):1878-1885. doi: 10.1080/14767058.2020.1771553. Epub 2020 May 28.

本文引用的文献

6
Predicting Spontaneous Preterm Birth Using the Immunome.利用免疫组预测自发性早产
Clin Perinatol. 2024 Jun;51(2):441-459. doi: 10.1016/j.clp.2024.02.013. Epub 2024 Apr 4.
10
Placental histology for targeted risk assessment of recurrent spontaneous preterm birth.用于复发性自发性早产靶向风险评估的胎盘组织学
Am J Obstet Gynecol. 2024 Apr;230(4):452.e1-452.e11. doi: 10.1016/j.ajog.2023.09.018. Epub 2023 Sep 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验