Suppr超能文献

将PROSPECT模型与叶片结构的先验估计相结合,以改进从双向反射因子光谱中反演叶片氮含量。

Coupling PROSPECT with Prior Estimation of Leaf Structure to Improve the Retrieval of Leaf Nitrogen Content in from Bidirectional Reflectance Factor Spectra.

作者信息

Zhou Kai, Qiu Saiting, Cao Fuliang, Wang Guibin, Cao Lin

机构信息

Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.

出版信息

Plant Phenomics. 2024 Dec 13;6:0282. doi: 10.34133/plantphenomics.0282. eCollection 2024.

Abstract

Leaf nitrogen content (LNC) is a crucial indicator for assessing the nitrogen status of forest trees. The LNC retrieval can be achieved with the inversion of the PROSPECT-PRO model. However, the LNC retrieval from the commonly used leaf bidirectional reflectance factor (BRF) spectra remains challenging arising from the confounding effects of mesophyll structure, specular reflection, and other chemicals such as water. To address this issue, this study proposed an advanced BRF spectra-based approach, by alleviating the specular reflection effects and enhancing the leaf nitrogen absorption signals from trees and saplings, using 3 modified ratio indices (i.e., mPrior_800, mPrior_1131, and mPrior_1365) for the prior estimation of the N structure parameter, combined with different inversion methods (STANDARD, sPROCOSINE, PROSDM, and PROCWT). The results demonstrated that the prior N estimation strategy using modified ratio indices outperformed standard ratio indices or nonperforming prior N estimation, especially for mPrior_1131 and mPrior_1365 yielding reliable performance for most constituents. With the use of the optimal approaches (i.e., PROCWT_S3 combined with mPrior_1131 or mPrior_1365), our results also revealed that the optimal estimation of LNC (normalized root mean square error [NRMSE] = 12.94% to 14.49%) and LNC (NRMSE = 10.11% to 10.75%) can be further achieved, with the selected optimal wavebands concentrated in 5 common main domains of 1440 to 1539 nm, 1580 to 1639 nm, 1900 to 1999 nm, 2020 to 2099 nm, and 2120 to 2179 nm. These findings highlight marked potentials of the novel BRF spectra-based approach to improve the estimation of LNC and enhance the understanding of the impact of N prior estimation on the LNC retrieval in leaves of trees and saplings.

摘要

叶片氮含量(LNC)是评估林木氮素状况的关键指标。LNC的反演可通过PROSPECT - PRO模型的反演来实现。然而,从常用的叶片双向反射率因子(BRF)光谱中反演LNC仍然具有挑战性,这是由于叶肉结构、镜面反射以及其他化学物质(如水)的混杂效应所致。为解决这一问题,本研究提出了一种基于先进BRF光谱的方法,通过减轻镜面反射效应并增强树木和幼树叶片的氮吸收信号,使用3个修正比值指数(即mPrior_800、mPrior_1131和mPrior_1365)对氮结构参数进行先验估计,并结合不同的反演方法(STANDARD、sPROCOSINE、PROSDM和PROCWT)。结果表明,使用修正比值指数的先验氮估计策略优于标准比值指数或效果不佳的先验氮估计,特别是mPrior_1131和mPrior_1365对大多数成分具有可靠的性能。通过使用最优方法(即PROCWT_S3与mPrior_1131或mPrior_1365相结合),我们的结果还表明,可以进一步实现LNC的最优估计(归一化均方根误差[NRMSE] = 12.94%至14.49%)和LNC(NRMSE = 10.11%至10.75%),所选的最优波段集中在1440至1539 nm、1580至1639 nm、1900至1999 nm、2020至2099 nm和2120至2179 nm这5个常见的主要波段范围内。这些发现突出了基于BRF光谱的新方法在改进LNC估计以及增强对氮先验估计对树木和幼树叶片LNC反演影响的理解方面的巨大潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验