Suppr超能文献

利用混合机器学习方法反演地上作物氮含量

Retrieval of aboveground crop nitrogen content with a hybrid machine learning method.

作者信息

Berger Katja, Verrelst Jochem, Féret Jean-Baptiste, Hank Tobias, Wocher Matthias, Mauser Wolfram, Camps-Valls Gustau

机构信息

Department of Geography, Ludwig-Maximilians-Umversität Munich, Luisenstr. 37, 80333, Munich, Germany.

Image Processing Laboratory (IPL), Parc Científic, Universitat de València, Paterna, València, 46980, Spain.

出版信息

Int J Appl Earth Obs Geoinf. 2020 Oct 1;92:102174. doi: 10.1016/j.jag.2020.102174. eCollection 2020 Oct.

Abstract

Hyperspectral acquisitions have proven to be the most informative Earth observation data source for the estimation of nitrogen (N) content, which is the main limiting nutrient for plant growth and thus agricultural production. In the past, empirical algorithms have been widely employed to retrieve information on this biochemical plant component from canopy reflectance. However, these approaches do not seek for a cause-effect relationship based on physical laws. Moreover, most studies solely relied on the correlation of chlorophyll content with nitrogen, and thus neglected the fact that most N is bound in proteins. Our study presents a hybrid retrieval method using a physically-based approach combined with machine learning regression to estimate crop N content. Within the workflow, the leaf optical properties model PROSPECT-PRO including the newly calibrated specific absorption coefficients (SAC) of proteins, was coupled with the canopy reflectance model 4SAIL to PROSAIL-PRO. The latter was then employed to generate a training database to be used for advanced probabilistic machine learning methods: a standard homoscedastic Gaussian process (GP) and a heteroscedastic GP regression that accounts for signal-to-noise relations. Both GP models have the property of providing confidence intervals for the estimates, which sets them apart from other machine learners. Moreover, a GP-based sequential backward band removal algorithm was employed to analyze the band-specific information content of PROSAIL-PRO simulated spectra for the estimation of aboveground N. Data from multiple hyperspectral field campaigns, carried out in the framework of the future satellite mission Environmental Mapping and Analysis Program (EnMAP), were exploited for validation. In these campaigns, corn and winter wheat spectra were acquired to simulate spectral EnMAP data. Moreover, destructive N measurements from leaves, stalks and fruits were collected separately to enable plant-organ-specific validation. The results showed that both GP models can provide accurate aboveground N simulations, with slightly better results of the heteroscedastic GP in terms of model testing and against N measurements from leaves plus stalks, with root mean square error (RMSE) of 2.1 g/m. However, the inclusion of fruit N content for validation deteriorated the results, which can be explained by the inability of the radiation to penetrate the thick tissues of stalks, corn cobs and wheat ears. GP-based band analysis identified optimal spectral settings with ten bands mainly situated in the shortwave infrared (SWIR) spectral region. Use of well-known protein absorption bands from the literature showed comparative results. Finally, the heteroscedastic GP model was successfully applied on airborne hyperspectral data for N mapping. We conclude that GP algorithms, and in particular the heteroscedastic GP, should be implemented for global agricultural monitoring of aboveground N from future imaging spectroscopy data.

摘要

高光谱采集已被证明是用于估算氮(N)含量的最具信息性的地球观测数据源,氮是植物生长乃至农业生产的主要限制养分。过去,经验算法已被广泛用于从冠层反射率中获取有关这种植物生化成分的信息。然而,这些方法并未基于物理定律寻求因果关系。此外,大多数研究仅依赖叶绿素含量与氮的相关性,因此忽略了大多数氮与蛋白质结合的事实。我们的研究提出了一种混合反演方法,该方法使用基于物理的方法与机器学习回归相结合来估算作物的氮含量。在工作流程中,将包含新校准的蛋白质比吸收系数(SAC)的叶片光学特性模型PROSPECT - PRO与冠层反射率模型4SAIL耦合为PROSAIL - PRO。然后使用后者生成一个训练数据库,用于先进的概率机器学习方法:标准同方差高斯过程(GP)和考虑信号与噪声关系的异方差GP回归。这两种GP模型都具有为估计提供置信区间的特性,这使它们有别于其他机器学习方法。此外,采用基于GP的顺序向后波段去除算法来分析PROSAIL - PRO模拟光谱的波段特定信息含量,以估算地上部氮含量。利用在未来卫星任务环境制图与分析计划(EnMAP)框架内开展的多次高光谱野外测量数据进行验证。在这些测量中,获取了玉米和冬小麦光谱以模拟EnMAP光谱数据。此外,分别收集了叶片、茎杆和果实的破坏性氮含量测量数据,以实现植物器官特异性验证。结果表明,两种GP模型都能提供准确的地上部氮模拟结果,就模型测试以及与叶片加茎杆的氮测量值相比,异方差GP的结果略好,均方根误差(RMSE)为2.1 g/m²。然而,将果实氮含量纳入验证会使结果变差,这可以通过辐射无法穿透茎杆、玉米穗和麦穗的厚组织来解释。基于GP的波段分析确定了十个主要位于短波红外(SWIR)光谱区域的最佳光谱设置。使用文献中知名的蛋白质吸收波段显示了可比的结果。最后,异方差GP模型成功应用于机载高光谱数据进行氮含量制图。我们得出结论,对于未来成像光谱数据进行全球地上部氮的农业监测,应采用GP算法,特别是异方差GP。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51a4/7613569/7e1bd3015019/EMS152645-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验