Leppälä Timo, Abdelmagid Ahmed Gaber, Qureshi Hassan A, Daskalakis Konstantinos S, Luoma Kimmo
Department of Physics and Astronomy, University of Turku, Turku, Finland.
Department of Mechanical and Materials Engineering, University of Turku, Turku, Finland.
Nanophotonics. 2024 Feb 9;13(14):2479-2490. doi: 10.1515/nanoph-2023-0749. eCollection 2024 Jun.
Hybridisation of the cavity modes and the excitons to polariton states together with the coupling to the vibrational modes determine the linear optical properties of organic semiconductors in microcavities. In this article we compute the refractive index for such system using the Holstein-Tavis-Cummings model and determine then the linear optical properties using the transfer matrix method. We first extract the parameters for the exciton in our model from fitting to experimentally measured absorption of a 2,7-bis[9,9-di(4-methylphenyl)-fluoren-2-yl]-9,9-di(4-methylphenyl) fluorene (TDAF) molecular thin film. Then we compute the reflectivity of such a thin film in a metal clad microcavity system by including the dispersive microcavity mode to the model. We compute susceptibility of the model systems evolving just a single state vector by using the non-Markovian quantum state diffusion. The computed location and height of the lower and upper polaritons agree with the experiment within the estimated errorbars for small angles . For larger angles the location of the polariton resonances are within the estimated error.
腔模与激子杂化形成极化激元态,以及与振动模的耦合,共同决定了微腔中有机半导体的线性光学性质。在本文中,我们使用霍尔斯坦 - 塔维斯 - 卡明斯模型计算该系统的折射率,然后使用转移矩阵法确定线性光学性质。我们首先通过拟合2,7 - 双[9,9 - 二(4 - 甲基苯基) - 芴 - 2 - 基] - 9,9 - 二(4 - 甲基苯基)芴(TDAF)分子薄膜的实验测量吸收光谱,提取我们模型中激子的参数。然后,通过将色散微腔模纳入模型,我们计算了这种薄膜在金属包覆微腔系统中的反射率。我们使用非马尔可夫量子态扩散计算仅演化单个态矢量的模型系统的极化率。对于小角度,计算得到的下极化激元和上极化激元的位置和高度在估计误差范围内与实验结果一致。对于较大角度,极化激元共振的位置在估计误差范围内。