Yoshimura Ryuichi, Endo Yoshitaka, Akashi Takuya, Deguchi Hiroyuki, Tomoyasu Makoto, Shigeeda Wataru, Kaneko Yuka, Saito Hajime
Department of Thoracic Surgery, School of Medicine, Iwate Medical University, Iwate, Japan.
Super-Computing and Information Sciences Center, Iwate University, Iwate, Japan.
J Thorac Dis. 2024 Nov 30;16(11):7320-7328. doi: 10.21037/jtd-24-1067. Epub 2024 Nov 18.
Artificial intelligence (AI) technology was introduced in medical data area and applied disease prediction models. This study aimed to establish an AI model for predicting lymph node metastasis based on simple medical examinations in patients with non-small cell lung cancer (NSCLC).
We retrospectively analyzed 988 patients with NSCLC who underwent radical pulmonary resection with mediastinal lymph node dissection between January 2011 and October 2022. We collected clinical characteristics including age, sex, smoking history, tumor marker levels, tumor side, segment location, total tumor size, solid tumor size and consolidation-to-tumor ratio, obtainable from medical interview, blood tests and plain computed tomography (CT) of the chest. All patients were randomly classified into a training set (n=790) and a validation set (n=198). Six algorithms including Support Vector Classification (SVC), k-nearest neighbor algorithm (k-NN), logistic regression (LR), random forest (RF), gradient boosting (GB) and multilayer perceptron (MLP) were created to decide the lymph node metastasis.
The GB model showed the best diagnostic performance, with 80.0% accuracy, 95.6% specificity and an area under the curve (AUC) of 0.75.
An AI model showed high specificity and accuracy for predicting lymph node metastasis. These models have potential to categorize suitable surgical procedures for NSCLC patients without needing contrast-enhanced CT or positron emission tomography.
人工智能(AI)技术已被引入医学数据领域并应用于疾病预测模型。本研究旨在基于非小细胞肺癌(NSCLC)患者的简单医学检查建立一种预测淋巴结转移的AI模型。
我们回顾性分析了2011年1月至2022年10月期间接受根治性肺切除及纵隔淋巴结清扫术的988例NSCLC患者。我们收集了临床特征,包括年龄、性别、吸烟史、肿瘤标志物水平、肿瘤侧别、节段位置、肿瘤总体大小、实性肿瘤大小以及实变与肿瘤比值,这些信息可通过医学访谈、血液检查和胸部平扫计算机断层扫描(CT)获得。所有患者被随机分为训练集(n = 790)和验证集(n = 198)。创建了包括支持向量分类(SVC)、k近邻算法(k-NN)、逻辑回归(LR)、随机森林(RF)、梯度提升(GB)和多层感知器(MLP)在内的六种算法来判定淋巴结转移情况。
GB模型显示出最佳诊断性能,准确率为80.0%,特异性为95.6%,曲线下面积(AUC)为0.75。
一种AI模型在预测淋巴结转移方面显示出高特异性和准确性。这些模型有潜力为NSCLC患者分类合适的手术程序,而无需增强CT或正电子发射断层扫描。