Suppr超能文献

基于F-18 FDG PET/CT的术前机器学习预测模型用于评估结肠癌患者区域淋巴结转移状态

F-18 FDG PET/CT based Preoperative Machine Learning Prediction Models for Evaluating Regional Lymph Node Metastasis Status of Patients with Colon Cancer.

作者信息

Choi Su Jung, Park Ji Sun, Baik Hyung Joo, An Min Sung, Bae Ki Beom, Lee Sun Seong

机构信息

Department of Nuclear Medicine, Busan Paik Hospital, University of Inje College of Medicine, Busan, Republic of Korea.

Department of Surgery, Busan Paik Hospital, University of Inje College of Medicine, Busan, Republic of Korea.

出版信息

Asian Pac J Cancer Prev. 2025 Jan 1;26(1):85-90. doi: 10.31557/APJCP.2025.26.1.85.

Abstract

OBJECTIVE

This study aimed to develop a simple machine-learning model incorporating lymph node metastasis status with F-18 Fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) and clinical information for predicting regional lymph node metastasis in patients with colon cancer.

METHODS

This retrospective study included 193 patients diagnosed with colon cancer between January 2014 and December 2017. All patients underwent F-18 FDG PET/CT and blood test before surgery. One categorical variable (lymph node FDG uptake [LNFDG]) and six continuous variables (age, neutrophil-to-lymphocyte ratio [NLR], carcinoembryonic antigen [CEA], carbohydrate antigen 19-9 [CA19-9], C-reactive protein, and maximal standardized uptake value (SUVmax) of the primary tumor) were used as input variables. Four supervised machine learning methods were used to build predictive models: logistic regression (LR), random forest (RF), gradient boosting machine (GBM), and support vector machine (SVM). Area under the receiver operating characteristic curve (AUC) of the validation set were used for evaluating and comparing model performance.

RESULTS

The number of patients with lymph node metastasis were 63 (33%). The mean number of harvested lymph nodes was 28.8 ± 11.4. The mean CEA, CA19-9, and CRP levels were 4.8 ± 9.3 ng/ml, 15.6 ± 42.8 U/ml, and 1.0 ± 3.0 mg/dl, respectively. The mean NLR was 2.2 ± 1.2. The mean SUVmax levels of the primary tumor were 15.2 ± 7.9. Fifty-one (26%) patients showed FDG uptake in the pericolic lymph nodes.  The mean AUC of the LR, RF, GBM, and SVM methods for the LNFDG model was 0.7046, 0.7047, 0.7040, and 0.7058, respectively. The mean AUC of the LR, RF, GBM, and SVM methods for the LNFDG plus clinical information model was 0.7046, 0.7302, 0.7444, and 0.7097, respectively.

CONCLUSION

Machine learning methods using LNFDG and clinical information could predict the lymph node metastasis status in patients with colon cancer with higher accuracy than a model using only FDG uptake of the lymph nodes.

摘要

目的

本研究旨在开发一种简单的机器学习模型,该模型将淋巴结转移状态与F-18氟脱氧葡萄糖正电子发射断层扫描/计算机断层扫描(FDG PET/CT)及临床信息相结合,用于预测结肠癌患者的区域淋巴结转移情况。

方法

这项回顾性研究纳入了2014年1月至2017年12月期间诊断为结肠癌的193例患者。所有患者在手术前均接受了F-18 FDG PET/CT检查和血液检测。将一个分类变量(淋巴结FDG摄取情况[LNFDG])和六个连续变量(年龄、中性粒细胞与淋巴细胞比值[NLR]、癌胚抗原[CEA]、糖类抗原19-9[CA19-9]、C反应蛋白以及原发肿瘤的最大标准化摄取值(SUVmax))用作输入变量。使用四种监督式机器学习方法构建预测模型:逻辑回归(LR)、随机森林(RF)、梯度提升机(GBM)和支持向量机(SVM)。验证集的受试者操作特征曲线下面积(AUC)用于评估和比较模型性能。

结果

发生淋巴结转移的患者有63例(33%)。平均收获淋巴结数量为28.8±11.4个。CEA、CA19-9和CRP的平均水平分别为4.8±9.3 ng/ml、15.6±42.8 U/ml和1.0±3.0 mg/dl。平均NLR为2.2±1.2。原发肿瘤的平均SUVmax水平为15.2±7.9。51例(26%)患者的结肠旁淋巴结出现FDG摄取。LNFDG模型中,LR、RF、GBM和SVM方法的平均AUC分别为0.7046、0.7047、0.7040和0.7058。LNFDG加临床信息模型中,LR、RF、GBM和SVM方法的平均AUC分别为0.7046、0.7302、0.7444和0.7097。

结论

使用LNFDG和临床信息的机器学习方法在预测结肠癌患者淋巴结转移状态方面,比仅使用淋巴结FDG摄取情况的模型具有更高的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dce0/12082408/cd5a21d32dae/APJCP-26-85-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验