Park Chaejin, Kim Sanmun, Jung Anthony W, Park Juho, Seo Dongjin, Kim Yongha, Park Chanhyung, Park Chan Y, Jang Min Seok
School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
KC Machine Learning Lab, Seoul 06181, Republic of Korea.
Nanophotonics. 2024 Feb 27;13(8):1483-1492. doi: 10.1515/nanoph-2023-0852. eCollection 2024 Apr.
Finding an optimal device structure in the vast combinatorial design space of freeform nanophotonic design has been an enormous challenge. In this study, we propose physics-informed reinforcement learning (PIRL) that combines the adjoint-based method with reinforcement learning to improve the sample efficiency by an order of magnitude compared to conventional reinforcement learning and overcome the issue of local minima. To illustrate these advantages of PIRL over other conventional optimization algorithms, we design a family of one-dimensional metasurface beam deflectors using PIRL, exceeding most reported records. We also explore the transfer learning capability of PIRL that further improves sample efficiency and demonstrate how the minimum feature size of the design can be enforced in PIRL through reward engineering. With its high sample efficiency, robustness, and ability to seamlessly incorporate practical device design constraints, our method offers a promising approach to highly combinatorial freeform device optimization in various physical domains.
在自由形式纳米光子学设计的广阔组合设计空间中找到最优器件结构一直是一项巨大的挑战。在本研究中,我们提出了物理信息强化学习(PIRL),它将基于伴随的方法与强化学习相结合,与传统强化学习相比,样本效率提高了一个数量级,并克服了局部最小值问题。为了说明PIRL相对于其他传统优化算法的这些优势,我们使用PIRL设计了一族一维超表面光束偏转器,超过了大多数已报道的记录。我们还探索了PIRL的迁移学习能力,其进一步提高了样本效率,并展示了如何通过奖励工程在PIRL中强制实施设计的最小特征尺寸。凭借其高样本效率、鲁棒性以及无缝纳入实际器件设计约束的能力,我们的方法为各种物理领域中高度组合的自由形式器件优化提供了一种很有前景的方法。