Bozzer Sara, Grimaldi Maria Cristina, De Maso Luca, Manfredi Marcello, Toffoli Giuseppe, Dal Bo Michele, Sblattero Daniele, Macor Paolo
Department of Life Sciences, University of Trieste, Trieste, 34127, Italy.
Department of Translational Medicine, Center for Translational Research on Autoimmune and Allergic Diseases, CAAD, University of Piemonte Orientale, Novara, Italy.
Int J Nanomedicine. 2024 Dec 10;19:13267-13286. doi: 10.2147/IJN.S476241. eCollection 2024.
In the bloodstream, nanoparticles (NPs) interact with serum proteins to form the protein corona, which includes both opsonins, promoting NP recognition and elimination, and dysopsonins, which can inhibit opsonin activity. Albumin, the most abundant serum protein, is part of this corona and can act as a dysopsonin, potentially hiding NPs from the immune system. This study aims to investigate how a covalently bound layer of human serum albumin (HSA) on polymeric NPs affects the protein corona and their behavior in the immune system.
We covalently attached HSA to the surface of polymeric NPs to modify the protein corona composition. These HSA-covered nanostructures were then decorated with an anti-CD19 recombinant antibody fragment to target malignant B cells, specifically acute lymphoblastic leukemia (ALL) cells. The safety profile and bioavailability of these targeted HSA-nanoparticles were evaluated in vitro and in vivo using a human-zebrafish xenograft model of ALL. The efficacy of the nanostructures in delivering encapsulated doxorubicin and suppressing tumor growth was also assessed.
The HSA coating on polymeric NPs effectively modified the protein corona, preventing opsonization and subsequent macrophage-mediated elimination. The targeted HSA-nanoparticles maintained a safe profile with reduced macrophage interaction and specifically targeted tumor cells in the xenograft model. This resulted in the successful delivery of doxorubicin, tumor growth suppression, and increased survival of the model organisms.
The study demonstrates that HSA-coated nanoparticles can be used as a therapeutic nanoplatform with a safe profile and enhanced bioavailability. The ability to decorate these nanostructures with specific targeting agents, such as anti-CD19 antibodies, opens up the potential for developing versatile therapeutic platforms that can be tailored to target various clinical conditions.
在血流中,纳米颗粒(NPs)与血清蛋白相互作用形成蛋白冠,其中既包括促进NP识别与清除的调理素,也包括可抑制调理素活性的抗调理素。白蛋白是血清中含量最丰富的蛋白质,是蛋白冠的一部分,可作为抗调理素,可能使NP逃避免疫系统。本研究旨在探讨聚合物纳米颗粒上共价结合的人血清白蛋白(HSA)层如何影响蛋白冠及其在免疫系统中的行为。
我们将HSA共价连接到聚合物纳米颗粒表面以改变蛋白冠的组成。然后用抗CD19重组抗体片段修饰这些覆盖有HSA的纳米结构,以靶向恶性B细胞,特别是急性淋巴细胞白血病(ALL)细胞。使用ALL的人-斑马鱼异种移植模型在体外和体内评估这些靶向HSA纳米颗粒的安全性和生物利用度。还评估了纳米结构在递送封装的阿霉素和抑制肿瘤生长方面的功效。
聚合物纳米颗粒上的HSA涂层有效地改变了蛋白冠,防止了调理作用及随后巨噬细胞介导的清除。靶向HSA纳米颗粒保持了安全的特性,减少了与巨噬细胞的相互作用,并在异种移植模型中特异性靶向肿瘤细胞。这导致阿霉素的成功递送、肿瘤生长抑制以及模型生物的存活率提高。
该研究表明,HSA包被的纳米颗粒可用作具有安全特性和增强生物利用度的治疗性纳米平台。用抗CD19抗体等特异性靶向剂修饰这些纳米结构的能力,为开发可针对各种临床病症进行定制的通用治疗平台开辟了潜力。