Zhu Fengyi, Wang Jian, Zhang Yongzheng, Tu Haifeng, Xia Xueqing, Zhang Jing, He Haiyan, Lin Hongzhen, Liu Meinan
State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China.
i-lab, & CAS Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
Adv Mater. 2025 Feb;37(5):e2411601. doi: 10.1002/adma.202411601. Epub 2024 Dec 16.
Lithium metal anode is desired by high capacity and low potential toward higher energy density than commercial graphite anode. However, the low-temperature Li metal batteries suffer from dendrite formation and dead Li resulting from uneven Li behaviors of flux with huge desolvation/diffusion barriers, thus leading to short lifespan and safety concern. Herein, differing from electrolyte engineering, a strategy of delocalizing electrons with generating rich active sites to regulate Li desolvation/diffusion behaviors are demonstrated via decorating polar chemical groups on porous metal-organic frameworks (MOFs). As comprehensively indicated by theoretical simulations, electrochemical analysis, in situ spectroscopies, electron microscope, and time-of-flight secondary-ion mass spectrometry, the sieving kinetics of desolvation is not merely relied on pore size morphology but also significantly affected by the ─NH polar chemical groups, reducing energy barriers for realizing non-dendritic and smooth Li metal plating. Consequently, the optimal cells stabilize for long lifespan of 2000 h and higher average Coulombic efficiency, much better than the-state-of-art reports. Under a lower negative/positive ratio of 3.3, the full cells with NH-MIL-125 deliver a high capacity-retention of 97.0% at 0.33 C even under -20 °C, showing the great potential of this kind of polar groups on boosting Li desolvation kinetics at room- and low-temperatures.
锂金属负极因其高容量和低电位而备受青睐,有望实现比商业石墨负极更高的能量密度。然而,低温锂金属电池存在枝晶形成和死锂问题,这是由于锂通量行为不均匀且存在巨大的去溶剂化/扩散势垒所致,从而导致电池寿命短和安全隐患。在此,与电解质工程不同,通过在多孔金属有机框架(MOF)上修饰极性化学基团,展示了一种通过产生丰富的活性位点来离域电子以调节锂去溶剂化/扩散行为的策略。理论模拟、电化学分析、原位光谱、电子显微镜和飞行时间二次离子质谱综合表明,去溶剂化的筛分动力学不仅依赖于孔径形态,还受到─NH极性化学基团的显著影响,降低了实现无枝晶和平滑锂金属电镀的能量势垒。因此,优化后的电池可稳定运行2000小时,具有更高的平均库仑效率,远优于现有报道。在负/正比低至3.3的情况下,含NH-MIL-125的全电池即使在-20°C下,在0.33 C的电流密度下仍具有97.0%的高容量保持率,显示出这种极性基团在促进室温和低温下锂去溶剂化动力学方面的巨大潜力。