Suppr超能文献

极端工作条件下锂离子电池的电解质设计

Electrolyte design for Li-ion batteries under extreme operating conditions.

作者信息

Xu Jijian, Zhang Jiaxun, Pollard Travis P, Li Qingdong, Tan Sha, Hou Singyuk, Wan Hongli, Chen Fu, He Huixin, Hu Enyuan, Xu Kang, Yang Xiao-Qing, Borodin Oleg, Wang Chunsheng

机构信息

Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, USA.

Battery Science Branch, Army Research Directorate, US DEVCOM Army Research Laboratory, Adelphi, MA, USA.

出版信息

Nature. 2023 Feb;614(7949):694-700. doi: 10.1038/s41586-022-05627-8. Epub 2023 Feb 8.

Abstract

The ideal electrolyte for the widely used LiNiMnCoO (NMC811)||graphite lithium-ion batteries is expected to have the capability of supporting higher voltages (≥4.5 volts), fast charging (≤15 minutes), charging/discharging over a wide temperature range (±60 degrees Celsius) without lithium plating, and non-flammability. No existing electrolyte simultaneously meets all these requirements and electrolyte design is hindered by the absence of an effective guiding principle that addresses the relationships between battery performance, solvation structure and solid-electrolyte-interphase chemistry. Here we report and validate an electrolyte design strategy based on a group of soft solvents that strikes a balance between weak Li-solvent interactions, sufficient salt dissociation and desired electrochemistry to fulfil all the aforementioned requirements. Remarkably, the 4.5-volt NMC811||graphite coin cells with areal capacities of more than 2.5 milliampere hours per square centimetre retain 75 per cent (54 per cent) of their room-temperature capacity when these cells are charged and discharged at -50 degrees Celsius (-60 degrees Celsius) at a C rate of 0.1C, and the NMC811||graphite pouch cells with lean electrolyte (2.5 grams per ampere hour) achieve stable cycling with an average Coulombic efficiency of more than 99.9 per cent at -30 degrees Celsius. The comprehensive analysis further reveals an impedance matching between the NMC811 cathode and the graphite anode owing to the formation of similar lithium-fluoride-rich interphases, thus effectively avoiding lithium plating at low temperatures. This electrolyte design principle can be extended to other alkali-metal-ion batteries operating under extreme conditions.

摘要

广泛使用的锂镍锰钴氧化物(NMC811)||石墨锂离子电池的理想电解质,预计应具备支持更高电压(≥4.5伏)、快速充电(≤15分钟)、在较宽温度范围(±60摄氏度)内充电/放电且无锂金属沉积以及不可燃的能力。现有的电解质无法同时满足所有这些要求,并且由于缺乏一种有效的指导原则来解决电池性能、溶剂化结构和固体电解质界面化学之间的关系,电解质设计受到阻碍。在此,我们报告并验证了一种基于一组软溶剂的电解质设计策略,该策略在弱锂 - 溶剂相互作用、充分的盐解离和所需的电化学性质之间取得平衡,以满足上述所有要求。值得注意的是,面积容量超过每平方厘米2.5毫安时的4.5伏NMC811||石墨扣式电池,在-50摄氏度(-60摄氏度)下以0.1C的C倍率进行充放电时,仍保留其室温容量的75%(54%),并且具有贫电解质(每安时2.5克)的NMC811||石墨软包电池在-30摄氏度下实现了稳定循环,平均库仑效率超过99.9%。综合分析进一步揭示,由于形成了类似的富含氟化锂的界面,NMC811正极和石墨负极之间实现了阻抗匹配,从而有效地避免了低温下的锂金属沉积。这种电解质设计原则可以扩展到在极端条件下运行的其他碱金属离子电池。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验