Suppr超能文献

散发性克雅氏病中可解释的深度学习生存预测

Interpretable deep learning survival predictions in sporadic Creutzfeldt-Jakob disease.

作者信息

Tam Johnny, Centola John, Kurucu Hatice, Watson Neil, MacKenzie Janet, Green Alison, Summers David, Barria Marcelo, Seth Sohan, Smith Colin, Pal Suvankar

机构信息

The UK National CJD Research and Surveillance Unit, Centre for Clinical Brain Sciences, Chancellor's Building, University of Edinburgh, Edinburgh, EH16 4TG, UK.

Institute of Adaptive and Neural Computation, School of Informatics, University of Edinburgh, Edinburgh, EH8 9AB, UK.

出版信息

J Neurol. 2024 Dec 16;272(1):62. doi: 10.1007/s00415-024-12815-1.

Abstract

BACKGROUND

Sporadic Creutzfeldt-Jakob disease (sCJD) is a rapidly progressive and fatal prion disease with significant public health implications. Survival is heterogenous, posing challenges for prognostication and care planning. We developed a survival model using diagnostic data from comprehensive UK sCJD surveillance.

METHODS

Using national CJD surveillance data from the United Kingdom (UK), we included 655 cases of probable or definite sCJD according to 2017 international consensus diagnostic criteria between 01/2017 and 01/2022. Data included symptoms at diagnosis, CSF RT-QuIC and 14-3-3, MRI and EEG findings, as well as sex, age, PRNP codon 129 polymorphism, CSF total protein and S100b. An artificial neural network based multitask logistic regression was used for survival analysis. Model-agnostic interpretation methods was used to assess the contribution of individual features on model outcome.

RESULTS

Our algorithm had a c-index of 0.732, IBS of 0.079, and AUC at 5 and 10 months of 0.866 and 0.872, respectively. This modestly improved on Cox proportional hazard model (c-index 0.730, IBS 0.083, AUC 0.852 and 0863) but was not statistically significant. Both models identified codon 129 polymorphism and CSF 14-3-3 to be significant predictive features.

CONCLUSIONS

sCJD survival can be predicted using routinely collected clinical data at diagnosis. Our analysis pipeline has similar levels of performance to classical methods and provide clinically meaningful interpretation which help deepen clinical understanding of the condition. Further development and clinical validation will facilitate improvements in prognostication, care planning, and stratification to clinical trials.

摘要

背景

散发性克雅氏病(sCJD)是一种快速进展的致命性朊病毒病,对公共卫生具有重大影响。其生存期存在异质性,给预后评估和护理规划带来挑战。我们利用来自英国全面的sCJD监测的诊断数据开发了一种生存模型。

方法

使用来自英国的国家克雅氏病监测数据,我们纳入了2017年1月至2022年1月期间根据2017年国际共识诊断标准确诊的655例可能或确诊的sCJD病例。数据包括诊断时的症状、脑脊液实时荧光定量检测(RT-QuIC)和14-3-3、磁共振成像(MRI)和脑电图(EEG)结果,以及性别、年龄、PRNP基因第129密码子多态性、脑脊液总蛋白和S100b。使用基于人工神经网络的多任务逻辑回归进行生存分析。采用模型无关解释方法评估个体特征对模型结果的贡献。

结果

我们算法的c指数为0.732,综合校准指数(IBS)为0.079,5个月和10个月时的曲线下面积(AUC)分别为0.866和0.872。这比Cox比例风险模型(c指数0.730,IBS 0.083,AUC 0.852和0.863)略有改善,但无统计学意义。两种模型均确定第129密码子多态性和脑脊液14-3-3为显著的预测特征。

结论

可使用诊断时常规收集的临床数据预测sCJD的生存期。我们的分析流程与传统方法具有相似的性能水平,并提供具有临床意义的解释,有助于加深对该疾病的临床理解。进一步的开发和临床验证将有助于改善预后评估、护理规划以及临床试验分层。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c7b/11649833/7c433b4be349/415_2024_12815_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验