Suppr超能文献

使用加窗时间滞后互相关矩阵探索脑血流动力学与自主神经系统之间的同步瞬变:一项CENTER-TBI研究

Exploration of simultaneous transients between cerebral hemodynamics and the autonomic nervous system using windowed time-lagged cross-correlation matrices: a CENTER-TBI study.

作者信息

Uryga Agnieszka, Mataczyński Cyprian, Pelah Adam I, Burzyńska Małgorzata, Robba Chiara, Czosnyka Marek

机构信息

Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw, Poland.

Department of Computer Engineering, Faculty of Information and Communication Technology, Wroclaw University of Science and Technology, Wroclaw, Poland.

出版信息

Acta Neurochir (Wien). 2024 Dec 16;166(1):504. doi: 10.1007/s00701-024-06375-6.

Abstract

BACKGROUND

Traumatic brain injury (TBI) can significantly disrupt autonomic nervous system (ANS) regulation, increasing the risk for secondary complications, hemodynamic instability, and adverse outcome. This retrospective study evaluated windowed time-lagged cross-correlation (WTLCC) matrices for describing cerebral hemodynamics-ANS interactions to predict outcome, enabling identifying high-risk patients who may benefit from enhanced monitoring to prevent complications.

METHODS

The first experiment aimed to predict short-term outcome using WTLCC-based convolution neural network models on the Wroclaw University Hospital (WUH) database (P = 31 with 1,079 matrices, P = 16 with 573 matrices). The second experiment predicted long-term outcome, training on the CENTER-TBI database (P = 100 with 17,062 matrices) and validating on WUH (P = 47 with 6,220 matrices). Cerebral hemodynamics was characterized using intracranial pressure (ICP), cerebral perfusion pressure (CPP), pressure reactivity index (PRx), while ANS metrics included low-to-high-frequency heart rate variability (LF/HF) and baroreflex sensitivity (BRS) over 72 h. Short-term outcome at WUH was assessed using the Glasgow Outcome Scale (GOS) at discharge. Long-term outcome was evaluated at 3 months at WUH and 6 months at CENTER-TBI using GOS and GOS-Extended, respectively. The XGBoost model was used to compare performance of WTLCC-based model and averaged neuromonitoring parameters, adjusted for age, Glasgow Coma Scale, major extracranial injury, and pupil reactivity in outcome prediction.

RESULTS

For short-term outcome prediction, the best-performing WTLCC-based model used ICP-LF/HF matrices. It had an area under the curve (AUC) of 0.80, vs. 0.71 for averages of ANS and cerebral hemodynamics metrics, adjusted for clinical metadata. For long-term outcome prediction, the best-score WTLCC-based model used ICP-LF/HF matrices. It had an AUC of 0.63, vs. 0.66 for adjusted neuromonitoring parameters.

CONCLUSIONS

Among all neuromonitoring parameters, ICP and LF/HF signals were the most effective in generating the WTLCC matrices. WTLCC-based model outperformed adjusted neuromonitoring parameters in short-term but had moderate utility in long-term outcome prediction.

摘要

背景

创伤性脑损伤(TBI)可显著扰乱自主神经系统(ANS)调节,增加继发并发症、血流动力学不稳定及不良预后的风险。这项回顾性研究评估了窗口化时间滞后互相关(WTLCC)矩阵,以描述脑血流动力学与ANS的相互作用来预测预后,从而能够识别可能从加强监测中受益以预防并发症的高危患者。

方法

第一个实验旨在使用基于WTLCC的卷积神经网络模型在弗罗茨瓦夫大学医院(WUH)数据库上预测短期预后(31例患者,1079个矩阵;16例患者,573个矩阵)。第二个实验预测长期预后,在CENTER-TBI数据库上进行训练(100例患者,17062个矩阵),并在WUH上进行验证(47例患者,6220个矩阵)。使用颅内压(ICP)、脑灌注压(CPP)、压力反应性指数(PRx)来表征脑血流动力学,而ANS指标包括72小时内的低频到高频心率变异性(LF/HF)和压力反射敏感性(BRS)。在WUH,出院时使用格拉斯哥预后量表(GOS)评估短期预后。在WUH,分别使用GOS和扩展GOS在3个月时评估长期预后,在CENTER-TBI在6个月时评估长期预后。使用XGBoost模型比较基于WTLCC的模型和平均神经监测参数在调整年龄、格拉斯哥昏迷量表、主要颅外损伤和瞳孔反应性后的预后预测性能。

结果

对于短期预后预测,表现最佳的基于WTLCC的模型使用ICP-LF/HF矩阵。其曲线下面积(AUC)为0.80,而调整临床元数据后的ANS和脑血流动力学指标平均值的AUC为0.71。对于长期预后预测,得分最高的基于WTLCC的模型使用ICP-LF/HF矩阵。其AUC为0.63,而调整后的神经监测参数的AUC为0.66。

结论

在所有神经监测参数中,ICP和LF/HF信号在生成WTLCC矩阵方面最有效。基于WTLCC的模型在短期预后预测中优于调整后的神经监测参数,但在长期预后预测中的效用中等。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073d/11649841/96a85344668d/701_2024_6375_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验