Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Department of Neurosurgery, Shiraz University of Medical Sciences, Shiraz, Iran.
Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran.
Sci Rep. 2023 Jan 18;13(1):960. doi: 10.1038/s41598-023-28188-w.
Predicting treatment outcomes in traumatic brain injury (TBI) patients is challenging worldwide. The present study aimed to achieve the most accurate machine learning (ML) algorithms to predict the outcomes of TBI treatment by evaluating demographic features, laboratory data, imaging indices, and clinical features. We used data from 3347 patients admitted to a tertiary trauma centre in Iran from 2016 to 2021. After the exclusion of incomplete data, 1653 patients remained. We used ML algorithms such as random forest (RF) and decision tree (DT) with ten-fold cross-validation to develop the best prediction model. Our findings reveal that among different variables included in this study, the motor component of the Glasgow coma scale, the condition of pupils, and the condition of cisterns were the most reliable features for predicting in-hospital mortality, while the patients' age takes the place of cisterns condition when considering the long-term survival of TBI patients. Also, we found that the RF algorithm is the best model to predict the short-term mortality of TBI patients. However, the generalized linear model (GLM) algorithm showed the best performance (with an accuracy rate of 82.03 ± 2.34) in predicting the long-term survival of patients. Our results showed that using appropriate markers and with further development, ML has the potential to predict TBI patients' survival in the short- and long-term.
预测创伤性脑损伤(TBI)患者的治疗结果在全球范围内都是具有挑战性的。本研究旨在通过评估人口统计学特征、实验室数据、影像学指数和临床特征,实现最准确的机器学习(ML)算法来预测 TBI 治疗的结果。我们使用了 2016 年至 2021 年期间,伊朗一家三级创伤中心收治的 3347 名患者的数据。在排除不完整的数据后,仍有 1653 名患者。我们使用了随机森林(RF)和决策树(DT)等 ML 算法,并进行了十折交叉验证,以开发最佳预测模型。我们的研究结果表明,在纳入本研究的不同变量中,格拉斯哥昏迷量表的运动成分、瞳孔状况和脑池状况是预测住院死亡率最可靠的特征,而在考虑 TBI 患者的长期生存时,患者的年龄则取代了脑池状况。此外,我们发现 RF 算法是预测 TBI 患者短期死亡率的最佳模型。然而,广义线性模型(GLM)算法在预测患者的长期生存方面表现最佳(准确率为 82.03±2.34)。我们的研究结果表明,通过使用适当的标志物并进一步开发,ML 有可能在短期和长期预测 TBI 患者的生存情况。