Suppr超能文献

利用热力学图从有限观测中推断相变和临界指数。

Inferring phase transitions and critical exponents from limited observations with thermodynamic maps.

作者信息

Herron Lukas, Mondal Kinjal, Schneekloth John S, Tiwary Pratyush

机构信息

Biophysics Program and Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742.

University of Maryland Institute for Health Computing, Bethesda, MD 20852.

出版信息

Proc Natl Acad Sci U S A. 2024 Dec 24;121(52):e2321971121. doi: 10.1073/pnas.2321971121. Epub 2024 Dec 16.

Abstract

Phase transitions are ubiquitous across life, yet hard to quantify and describe accurately. In this work, we develop an approach for characterizing generic attributes of phase transitions from very limited observations made deep within different phases' domains of stability. Our approach is called thermodynamic maps (TM), which combines statistical mechanics and molecular simulations with score-based generative models. TM enable learning the temperature dependence of arbitrary thermodynamic observables across a wide range of temperatures. We show its usefulness by calculating phase transition attributes such as melting temperature, temperature-dependent heat capacities, and critical exponents. For instance, we demonstrate the ability of TM to infer the ferromagnetic phase transition of the Ising model, including temperature-dependent heat capacity and critical exponents, despite never having seen samples from the transition region. In addition, we efficiently characterize the temperature-dependent conformational ensemble and compute melting curves of the two RNA systems: a GCAA tetraloop and the HIV-TAR RNA, which are notoriously hard to sample due to glassy-like energy landscapes.

摘要

相变在生命过程中无处不在,但却难以准确量化和描述。在这项工作中,我们开发了一种方法,用于从不同相稳定性区域深处进行的非常有限的观测中,表征相变的一般属性。我们的方法称为热力学映射(TM),它将统计力学和分子模拟与基于分数的生成模型相结合。TM能够在很宽的温度范围内学习任意热力学可观测量的温度依赖性。我们通过计算诸如熔化温度、温度依赖性热容量和临界指数等相变属性来展示其有用性。例如,我们证明了TM能够推断伊辛模型的铁磁相变,包括温度依赖性热容量和临界指数,尽管从未见过来自相变区域的样本。此外,我们有效地表征了温度依赖性构象系综,并计算了两个RNA系统的熔解曲线:一个GCAA四环和HIV-TAR RNA,由于类似玻璃态的能量景观,它们 notoriously hard to sample(此处疑为“极难采样”,可能原文有拼写错误)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c087/11670242/e98924f79804/pnas.2321971121fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验