Kobyzev Ivan, Prince Simon J D, Brubaker Marcus A
IEEE Trans Pattern Anal Mach Intell. 2021 Nov;43(11):3964-3979. doi: 10.1109/TPAMI.2020.2992934. Epub 2021 Oct 1.
Normalizing Flows are generative models which produce tractable distributions where both sampling and density evaluation can be efficient and exact. The goal of this survey article is to give a coherent and comprehensive review of the literature around the construction and use of Normalizing Flows for distribution learning. We aim to provide context and explanation of the models, review current state-of-the-art literature, and identify open questions and promising future directions.
归一化流是一种生成模型,它能产生易于处理的分布,在这种分布中采样和密度评估都可以高效且精确地进行。这篇综述文章的目的是对围绕归一化流用于分布学习的构建和使用的文献进行连贯且全面的综述。我们旨在提供模型的背景和解释,回顾当前的前沿文献,并识别开放问题和有前景的未来方向。