Suppr超能文献

基于联合定量核磁共振和液相色谱-串联质谱平台的1018项测量指标的脂蛋白和脂质代谢个性化分析

Personalized Profiling of Lipoprotein and Lipid Metabolism Based on 1018 Measures from Combined Quantitative NMR and LC-MS/MS Platforms.

作者信息

Zhao Siyu, Giles Corey, Huynh Kevin, Kettunen Johannes, Järvelin Marjo-Riitta, Kähönen Mika, Viikari Jorma, Lehtimäki Terho, Raitakari Olli T, Meikle Peter J, Mäkinen Ville-Petteri, Ala-Korpela Mika

机构信息

Systems Epidemiology, Faculty of Medicine, University of Oulu, 90014 Oulu, Finland.

Research Unit of Population Health, Faculty of Medicine, University of Oulu, 90014 Oulu, Finland.

出版信息

Anal Chem. 2024 Dec 31;96(52):20362-20370. doi: 10.1021/acs.analchem.4c03229. Epub 2024 Dec 16.

Abstract

Applications of advanced omics methodologies are increasingly popular in biomedicine. However, large-scale studies aiming at clinical translation are typically siloed to single technologies. Here, we present the first comprehensive large-scale population data combining 209 lipoprotein measures from a quantitative NMR spectroscopy platform and 809 lipid classes and species from a quantitative LC-MS/MS platform. These data with 1018 molecular measures were analyzed in two population cohorts totaling 7830 participants. The association and cluster analyses revealed excellent coherence between the methodologically independent data domains and confirmed their quantitative compatibility and suitability for large-scale studies. The analyses elucidated the detailed molecular characteristics of the heterogeneous circulatory macromolecular lipid transport system and the underlying structural and compositional relationships. Unsupervised neural network analysis─the so-called self-organizing maps (SOMs)─revealed that these deep molecular and metabolic data are inherently related to key physiological and clinical population characteristics. The data-driven population subgroups uncovered marked differences in the population distribution of multiple cardiometabolic risk factors. These include, e.g., multiple lipoprotein lipids, apolipoprotein B, ceramides, and oxidized lipids. All 79 structurally unique triglyceride species showed similar associations over the entire lipoprotein cascade and indicated systematically increased risk for carotid intima media thickening and other atherosclerosis risk factors, including obesity and inflammation. The metabolic attributes for 27 individual cholesteryl ester species, which formed six distinct clusters, were more intricate with associations both with higher─e.g., CE(16:1)─and lower─e.g., CE(20:4)─cardiometabolic risk. The molecular details provided by these combined data are unprecedented for molecular epidemiology and demonstrate a new potential avenue for population studies.

摘要

先进的组学方法在生物医学中的应用越来越普遍。然而,旨在进行临床转化的大规模研究通常局限于单一技术。在此,我们展示了首个全面的大规模人群数据,该数据结合了来自定量核磁共振波谱平台的209种脂蛋白测量值以及来自定量液相色谱-串联质谱平台的809种类脂和脂质分子。这些包含1018个分子测量值的数据在两个总计7830名参与者的人群队列中进行了分析。关联分析和聚类分析揭示了方法学上独立的数据域之间具有高度一致性,并证实了它们在定量方面的兼容性以及适用于大规模研究的特性。这些分析阐明了异质循环大分子脂质转运系统的详细分子特征以及潜在的结构和组成关系。无监督神经网络分析——即所谓的自组织映射(SOM)——表明,这些深度分子和代谢数据与关键生理和临床人群特征具有内在联系。数据驱动的人群亚组揭示了多种心脏代谢危险因素在人群分布上的显著差异。这些因素包括,例如,多种脂蛋白脂质、载脂蛋白B、神经酰胺和氧化脂质。所有79种结构独特的甘油三酯分子在整个脂蛋白级联反应中都显示出相似的关联,并表明颈动脉内膜中层增厚及其他动脉粥样硬化危险因素(包括肥胖和炎症)的风险系统性增加。27种个体胆固醇酯分子形成了六个不同的簇,其代谢属性更为复杂,与较高的心脏代谢风险(例如CE(16:1))和较低的心脏代谢风险(例如CE(20:4))均有关联。这些综合数据提供的分子细节在分子流行病学中是前所未有的,并为人群研究展示了一条新的潜在途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5786/11696825/892b53fa04db/ac4c03229_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验