文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用深度学习方法基于多参数MRI数据集预测乳腺癌的分子亚型。

Predicting molecular subtypes of breast cancer based on multi-parametric MRI dataset using deep learning method.

作者信息

Ren Wanqing, Xi Xiaoming, Zhang Xiaodong, Wang Kesong, Liu Menghan, Wang Dawei, Du Yanan, Sun Jingxiang, Zhang Guang

机构信息

Department of Radiology, Jinan Third People's Hospital, Jinan, China.

School of Computer Science and Technology, Shandong Jianzhu University, Jinan, China.

出版信息

Magn Reson Imaging. 2025 Apr;117:110305. doi: 10.1016/j.mri.2024.110305. Epub 2024 Dec 14.


DOI:10.1016/j.mri.2024.110305
PMID:39681144
Abstract

PURPOSE: To develop a multi-parametric MRI model for the prediction of molecular subtypes of breast cancer using five types of breast cancer preoperative MRI images. METHODS: In this study, we retrospectively analyzed clinical data and five types of MRI images (FS-T1WI, T2WI, Contrast-enhanced T1-weighted imaging (T1-C), DWI, and ADC) from 325 patients with pathologically confirmed breast cancer. Using the five types of MRI images as inputs to the ResNeXt50 model respectively, five base models were constructed, and then the outputs of the five base models were fused using an ensemble learning approach to develop a multi-parametric MRI model. Breast cancer was classified into four molecular subtypes based on immunohistochemical results: luminal A, luminal B, human epidermal growth factor receptor 2-positive (HER2-positive), and triple-negative (TN). The whole dataset was randomly divided into a training set (n = 260; 76 luminal A, 80 luminal B, 50 HER2-positive, 54 TN) and a testing set (n = 65; 20 luminal A, 20 luminal B, 12 HER2-positive, 13 TN). Accuracy, sensitivity, specificity, receiver operating characteristic curve (ROC) and area under the curve (AUC) were calculated to assess the predictive performance of the models. RESULTS: In the testing set, for the assessment of the four molecular subtypes of breast cancer, the multi-parametric MRI model yielded an AUC of 0.859-0.912; the AUCs based on the FS-T1WI, T2WI, T1-C, DWI, and ADC models achieved respectively 0.632-0. 814, 0.641-0.788, 0.621-0.709, 0.620-0.701and 0.611-0.785. CONCLUSION: The multi-parametric MRI model we developed outperformed the base models in predicting breast cancer molecular subtypes. Our study also showed the potential of FS-T1WI base model in predicting breast cancer molecular subtypes.

摘要

目的:利用五种类型的乳腺癌术前MRI图像,开发一种用于预测乳腺癌分子亚型的多参数MRI模型。 方法:在本研究中,我们回顾性分析了325例经病理证实的乳腺癌患者的临床数据和五种类型的MRI图像(脂肪抑制T1加权成像(FS-T1WI)、T2加权成像(T2WI)、对比增强T1加权成像(T1-C)、扩散加权成像(DWI)和表观扩散系数(ADC))。分别将五种类型的MRI图像作为输入导入ResNeXt50模型,构建五个基础模型,然后使用集成学习方法融合五个基础模型的输出,以开发一种多参数MRI模型。根据免疫组化结果,将乳腺癌分为四种分子亚型:腔面A型、腔面B型、人表皮生长因子受体2阳性(HER2阳性)和三阴性(TN)。将整个数据集随机分为训练集(n = 260;76例腔面A型、80例腔面B型、50例HER2阳性、54例TN)和测试集(n = 65;20例腔面A型、20例腔面B型、12例HER2阳性、13例TN)。计算准确率、灵敏度、特异性、受试者工作特征曲线(ROC)和曲线下面积(AUC),以评估模型的预测性能。 结果:在测试集中,对于乳腺癌四种分子亚型的评估,多参数MRI模型的AUC为0.859 - 0.912;基于FS-T1WI、T2WI、T1-C、DWI和ADC模型的AUC分别为0.632 - 0.814、0.641 - 0.788、0.621 - 0.709、0.620 - 0.701和0.611 - 0.785。 结论:我们开发的多参数MRI模型在预测乳腺癌分子亚型方面优于基础模型。我们的研究还显示了FS-T1WI基础模型在预测乳腺癌分子亚型方面的潜力。

相似文献

[1]
Predicting molecular subtypes of breast cancer based on multi-parametric MRI dataset using deep learning method.

Magn Reson Imaging. 2025-4

[2]
Automatic Segmentation and Molecular Subtype Classification of Breast Cancer Using an MRI-based Deep Learning Framework.

Radiol Imaging Cancer. 2025-5

[3]
Development and Validation of a Deep Learning System to Differentiate HER2-Zero, HER2-Low, and HER2-Positive Breast Cancer Based on Dynamic Contrast-Enhanced MRI.

J Magn Reson Imaging. 2025-5

[4]
Clinical Breast MRI-based Radiomics for Distinguishing Benign and Malignant Lesions: An Analysis of Sequences and Enhanced Phases.

J Magn Reson Imaging. 2024-9

[5]
Noninvasive assessment of breast cancer molecular subtypes on multiparametric MRI using convolutional neural network with transfer learning.

Thorac Cancer. 2022-11

[6]
Combination of DCE-MRI and NME-DWI via Deep Neural Network for Predicting Breast Cancer Molecular Subtypes.

Clin Breast Cancer. 2024-7

[7]
A Channel-Dimensional Feature-Reconstructed Deep Learning Model for Predicting Breast Cancer Molecular Subtypes on Overall b-Value Diffusion-Weighted MRI.

J Magn Reson Imaging. 2024-4

[8]
A Deep Learning Model for Predicting Molecular Subtype of Breast Cancer by Fusing Multiple Sequences of DCE-MRI From Two Institutes.

Acad Radiol. 2024-9

[9]
Preoperative Prediction of Axillary Lymph Node Metastasis in Breast Cancer Using CNN Based on Multiparametric MRI.

J Magn Reson Imaging. 2022-9

[10]
Study on the differential diagnosis of benign and malignant breast lesions using a deep learning model based on multimodal images.

J Cancer Res Ther. 2024-4-1

引用本文的文献

[1]
Application of Machine Learning to Breast MR Imaging.

Magn Reson Med Sci. 2025-7-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索