文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

榴莲:基于结构的3D分子生成的综合基准

Durian: A Comprehensive Benchmark for Structure-Based 3D Molecular Generation.

作者信息

Nie Dou, Zhao Huifeng, Zhang Odin, Weng Gaoqi, Zhang Hui, Jin Jieyu, Lin Haitao, Huang Yufei, Liu Liwei, Li Dan, Hou Tingjun, Kang Yu

机构信息

Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 Zhejiang, China.

Huawei Nanjing Research & Development Center, No. 101 Software Avenue, Yuhuatai District, Nanjing, 210012 Jiangsu, China.

出版信息

J Chem Inf Model. 2025 Jan 13;65(1):173-186. doi: 10.1021/acs.jcim.4c02232. Epub 2024 Dec 16.


DOI:10.1021/acs.jcim.4c02232
PMID:39681323
Abstract

Three-dimensional (3D) molecular generation models employ deep neural networks to simultaneously generate both topological representation and molecular conformations. Due to their advantages in utilizing the structural and interaction information on targets, as well as their reduced reliance on existing bioactivity data, these models have attracted widespread attention. However, limited training and testing data sets and the unexpected biases inherent in single evaluation metrics pose a significant challenge in comparing these models in practical settings. In this work, we proposed Durian, an evaluation framework for structure-based 3D molecular generation that incorporates protein-ligand data with experimental affinity and a comprehensive array of physicochemical and geometric metrics. The benchmark tasks encompass assessing the capability of models to reproduce the property distribution of training sets, generate molecules with rational distributions of drug-related properties, and exhibit potential high affinity toward given targets. Binding affinities were evaluated using three independent docking methods (QuickVina2, Surflex and Gnina) with both "" and "" modes to reduce false positives arising from conformational searches or scoring functions. Specifically, we applied Durian to six 3D molecular generation methods: LiGAN, Pocket2Mol, DiffSBDD, SBDD, GraphBP, and SurfGen. While most methods demonstrated the ability to generate drug-like small molecules with reasonable physicochemical properties, they exhibited varying degrees of limitations in balancing novelty, structural rationality, and synthetic accessibility, thereby constraining their practical applications in drug discovery. Based on a total of 17 metrics, Durian highlights the importance of multiobjective optimization in 3D molecular generation methods. For instance, SurfGen and SBDD showed relatively comprehensive performance but could benefit from further improvements in molecular conformational rationality. Our evaluation framework is expected to provide meaningful guidance for the selection, optimization, and application of 3D generative models in practical drug design tasks.

摘要

三维(3D)分子生成模型利用深度神经网络同时生成拓扑表示和分子构象。由于它们在利用目标上的结构和相互作用信息方面具有优势,以及对现有生物活性数据的依赖减少,这些模型受到了广泛关注。然而,有限的训练和测试数据集以及单一评估指标中固有的意外偏差,在实际环境中比较这些模型时构成了重大挑战。在这项工作中,我们提出了Durian,这是一个基于结构的3D分子生成评估框架,它将蛋白质 - 配体数据与实验亲和力以及一系列全面的物理化学和几何指标相结合。基准任务包括评估模型再现训练集性质分布的能力、生成具有合理药物相关性质分布的分子以及对给定目标表现出潜在高亲和力的能力。使用三种独立的对接方法(QuickVina2、Surflex和Gnina)在“ ”和“ ”模式下评估结合亲和力,以减少由构象搜索或评分函数产生的假阳性。具体而言,我们将Durian应用于六种3D分子生成方法:LiGAN、Pocket2Mol、DiffSBDD、SBDD、GraphBP和SurfGen。虽然大多数方法都展示了生成具有合理物理化学性质的类药物小分子的能力,但它们在平衡新颖性、结构合理性和合成可及性方面表现出不同程度的局限性,从而限制了它们在药物发现中的实际应用。基于总共17个指标,Durian强调了多目标优化在3D分子生成方法中的重要性。例如,SurfGen和SBDD表现出相对全面的性能,但在分子构象合理性方面仍可进一步改进。我们的评估框架有望为3D生成模型在实际药物设计任务中的选择、优化和应用提供有意义的指导。

相似文献

[1]
Durian: A Comprehensive Benchmark for Structure-Based 3D Molecular Generation.

J Chem Inf Model. 2025-1-13

[2]
Template-Based Method for Conformation Generation and Scoring for Congeneric Series of Ligands.

J Chem Inf Model. 2019-5-9

[3]
Advancing Ligand Docking through Deep Learning: Challenges and Prospects in Virtual Screening.

Acc Chem Res. 2024-5-21

[4]
Boosted neural networks scoring functions for accurate ligand docking and ranking.

J Bioinform Comput Biol. 2018-4

[5]
Comparison of structure- and ligand-based scoring functions for deep generative models: a GPCR case study.

J Cheminform. 2021-5-13

[6]
RediscMol: Benchmarking Molecular Generation Models in Biological Properties.

J Med Chem. 2024-1-25

[7]
Learning on topological surface and geometric structure for 3D molecular generation.

Nat Comput Sci. 2023-10

[8]
How Good are Current Pocket-Based 3D Generative Models?: The Benchmark Set and Evaluation of Protein Pocket-Based 3D Molecular Generative Models.

J Chem Inf Model. 2024-12-23

[9]
Task-Specific Scoring Functions for Predicting Ligand Binding Poses and Affinity and for Screening Enrichment.

J Chem Inf Model. 2017-12-20

[10]
Energy-based graph convolutional networks for scoring protein docking models.

Proteins. 2020-8

引用本文的文献

[1]
Benchmarking 3D Structure-Based Molecule Generators.

J Chem Inf Model. 2025-8-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索