Suppr超能文献

快速诊断:开发一种用于从照片中检测阴茎癌的人工智能算法。

Snap Diagnosis: Developing an Artificial Intelligence Algorithm for Penile Cancer Detection from Photographs.

作者信息

Liu Jianliang, O'Brien Jonathan S, Nandakishor Kishor, Sathianathen Niranjan J, Teh Jiasian, Manning Todd, Woon Dixon T S, Murphy Declan G, Bolton Damien, Chee Justin, Palaniswami Marimuthu, Lawrentschuk Nathan

机构信息

EJ Whitten Prostate Cancer Research Centre, Epworth Healthcare, Melbourne, VIC 3005, Australia.

Department of Urology, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC 3052, Australia.

出版信息

Cancers (Basel). 2024 Nov 27;16(23):3971. doi: 10.3390/cancers16233971.

Abstract

: Penile cancer is aggressive and rapidly progressive. Early recognition is paramount for overall survival. However, many men delay presentation due to a lack of awareness and social stigma. This pilot study aims to develop a convolutional neural network (CNN) model to differentiate penile cancer from precancerous and benign penile lesions. The CNN was developed using 136 penile lesion images sourced from peer-reviewed open access publications. These images included 65 penile squamous cell carcinoma (SCC), 44 precancerous lesions, and 27 benign lesions. The dataset was partitioned using a stratified split into training (64%), validation (16%), and test (20%) sets. The model was evaluated using ten trials of 10-fold internal cross-validation to ensure robust performance assessment. When distinguishing between benign penile lesions and penile SCC, the CNN achieved an Area Under the Receiver Operating Characteristic Curve (AUROC) of 0.94, with a sensitivity of 0.82, specificity of 0.87, positive predictive value of 0.95, and negative predictive value of 0.72. The CNN showed reduced discriminative capability in differentiating precancerous lesions from penile SCC, with an AUROC of 0.74, sensitivity of 0.75, specificity of 0.65, PPV of 0.45, and NPV of 0.88. These findings demonstrate the potential of artificial intelligence in identifying penile SCC. Limitations of this study include the small sample size and reliance on photographs from publications. Further refinement and validation of the CNN using real-life data are needed.

摘要

阴茎癌具有侵袭性且进展迅速。早期识别对总体生存至关重要。然而,由于缺乏认识和社会 stigma,许多男性延迟就诊。这项试点研究旨在开发一种卷积神经网络(CNN)模型,以区分阴茎癌与癌前和良性阴茎病变。CNN 使用从同行评审的开放获取出版物中获取的 136 张阴茎病变图像进行开发。这些图像包括 65 例阴茎鳞状细胞癌(SCC)、44 例癌前病变和 27 例良性病变。数据集使用分层分割法分为训练集(64%)、验证集(16%)和测试集(20%)。该模型使用十次 10 折内部交叉验证进行评估,以确保进行稳健的性能评估。在区分良性阴茎病变和阴茎 SCC 时,CNN 的受试者操作特征曲线下面积(AUROC)为 0.94,敏感性为 0.82,特异性为 0.87,阳性预测值为 0.95,阴性预测值为 0.72。CNN 在区分癌前病变与阴茎 SCC 时显示出较低的判别能力,AUROC 为 0.74,敏感性为 0.75,特异性为 0.65,阳性预测值为 0.45,阴性预测值为 0.88。这些发现证明了人工智能在识别阴茎 SCC 方面的潜力。本研究的局限性包括样本量小以及依赖出版物中的照片。需要使用实际数据对 CNN 进行进一步优化和验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61b5/11640715/43a1c65de5e6/cancers-16-03971-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验