文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

深度学习和设备辅助小肠镜检查:自动全小肠镜下溃疡和糜烂的检测。

Deep-Learning and Device-Assisted Enteroscopy: Automatic Panendoscopic Detection of Ulcers and Erosions.

机构信息

Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal.

WGO Gastroenterology and Hepatology Training Center, 4200-427 Porto, Portugal.

出版信息

Medicina (Kaunas). 2023 Jan 15;59(1):172. doi: 10.3390/medicina59010172.


DOI:10.3390/medicina59010172
PMID:36676796
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9865285/
Abstract

: Device-assisted enteroscopy (DAE) has a significant role in approaching enteric lesions. Endoscopic observation of ulcers or erosions is frequent and can be associated with many nosological entities, namely Crohn's disease. Although the application of artificial intelligence (AI) is growing exponentially in various imaged-based gastroenterology procedures, there is still a lack of evidence of the AI technical feasibility and clinical applicability of DAE. This study aimed to develop and test a multi-brand convolutional neural network (CNN)-based algorithm for automatically detecting ulcers and erosions in DAE. : A unicentric retrospective study was conducted for the development of a CNN, based on a total of 250 DAE exams. A total of 6772 images were used, of which 678 were considered ulcers or erosions after double-validation. Data were divided into a training and a validation set, the latter being used for the performance assessment of the model. Our primary outcome measures were sensitivity, specificity, accuracy, positive predictive value (PPV), negative predictive value (NPV), and an area under the curve precision-recall curve (AUC-PR). : Sensitivity, specificity, PPV, and NPV were respectively 88.5%, 99.7%, 96.4%, and 98.9%. The algorithm's accuracy was 98.7%. The AUC-PR was 1.00. The CNN processed 293.6 frames per second, enabling AI live application in a real-life clinical setting in DAE. : To the best of our knowledge, this is the first study regarding the automatic multi-brand panendoscopic detection of ulcers and erosions throughout the digestive tract during DAE, overcoming a relevant interoperability challenge. Our results highlight that using a CNN to detect this type of lesion is associated with high overall accuracy. The development of binary CNN for automatically detecting clinically relevant endoscopic findings and assessing endoscopic inflammatory activity are relevant steps toward AI application in digestive endoscopy, particularly for panendoscopic evaluation.

摘要

: 设备辅助式小肠镜检查(DAE)在处理肠内病变方面具有重要作用。观察溃疡或糜烂是常见的,并且可能与许多疾病实体相关,即克罗恩病。尽管人工智能(AI)在各种基于影像学的胃肠病学程序中的应用呈指数级增长,但仍缺乏关于 DAE 的 AI 技术可行性和临床适用性的证据。本研究旨在开发和测试一种基于多品牌卷积神经网络(CNN)的算法,用于自动检测 DAE 中的溃疡和糜烂。 : 进行了一项单中心回顾性研究,以开发一种基于总共 250 次 DAE 检查的 CNN。使用了总共 6772 张图像,其中 678 张在经过双重验证后被认为是溃疡或糜烂。数据分为训练集和验证集,后者用于评估模型的性能。我们的主要观察指标是敏感性、特异性、准确性、阳性预测值(PPV)、阴性预测值(NPV)和曲线下面积精度-召回曲线(AUC-PR)。 : 敏感性、特异性、PPV 和 NPV 分别为 88.5%、99.7%、96.4%和 98.9%。算法的准确率为 98.7%。AUC-PR 为 1.00。CNN 每秒处理 293.6 帧,使 AI 能够在 DAE 中的实际临床环境中实时应用。 : 据我们所知,这是第一项关于在 DAE 期间通过多品牌全内镜自动检测整个消化道溃疡和糜烂的研究,克服了一个相关的互操作性挑战。我们的结果表明,使用 CNN 检测这种类型的病变与高总体准确性相关。开发用于自动检测临床相关内镜发现和评估内镜炎症活动的二进制 CNN 是 AI 在消化内镜中应用的重要步骤,特别是用于全内镜评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5d1/9865285/78209f6c5d70/medicina-59-00172-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5d1/9865285/2346593ea625/medicina-59-00172-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5d1/9865285/83adcd2881e3/medicina-59-00172-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5d1/9865285/78209f6c5d70/medicina-59-00172-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5d1/9865285/2346593ea625/medicina-59-00172-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5d1/9865285/83adcd2881e3/medicina-59-00172-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5d1/9865285/78209f6c5d70/medicina-59-00172-g003.jpg

相似文献

[1]
Deep-Learning and Device-Assisted Enteroscopy: Automatic Panendoscopic Detection of Ulcers and Erosions.

Medicina (Kaunas). 2023-1-15

[2]
Artificial Intelligence and Panendoscopy-Automatic Detection of Clinically Relevant Lesions in Multibrand Device-Assisted Enteroscopy.

Cancers (Basel). 2024-1-1

[3]
Deep Learning and Device-Assisted Enteroscopy: Automatic Detection of Gastrointestinal Angioectasia.

Medicina (Kaunas). 2021-12-18

[4]
Deep learning and capsule endoscopy: Automatic multi-brand and multi-device panendoscopic detection of vascular lesions.

Endosc Int Open. 2024-4-23

[5]
Automated detection of ulcers and erosions in capsule endoscopy images using a convolutional neural network.

Med Biol Eng Comput. 2022-3

[6]
Artificial Intelligence and Device-Assisted Enteroscopy: Automatic Detection of Enteric Protruding Lesions Using a Convolutional Neural Network.

Clin Transl Gastroenterol. 2022-8-1

[7]
Artificial intelligence and colon capsule endoscopy: Automatic detection of ulcers and erosions using a convolutional neural network.

J Gastroenterol Hepatol. 2022-12

[8]
Deep Learning and Minimally Invasive Endoscopy: Automatic Classification of Pleomorphic Gastric Lesions in Capsule Endoscopy.

Clin Transl Gastroenterol. 2023-10-1

[9]
Identification of Ulcers and Erosions by the Novel Pillcam™ Crohn's Capsule Using a Convolutional Neural Network: A Multicentre Pilot Study.

J Crohns Colitis. 2022-1-28

[10]
Automatic detection of erosions and ulcerations in wireless capsule endoscopy images based on a deep convolutional neural network.

Gastrointest Endosc. 2018-10-25

引用本文的文献

[1]
Artificial Intelligence in Endoscopic and Ultrasound Imaging for Inflammatory Bowel Disease.

J Clin Med. 2025-6-16

[2]
Artificial Intelligence in Inflammatory Bowel Disease Endoscopy.

Diagnostics (Basel). 2025-4-1

[3]
From Data to Insights: How Is AI Revolutionizing Small-Bowel Endoscopy?

Diagnostics (Basel). 2024-1-29

[4]
Artificial Intelligence and Panendoscopy-Automatic Detection of Clinically Relevant Lesions in Multibrand Device-Assisted Enteroscopy.

Cancers (Basel). 2024-1-1

[5]
A newly developed deep learning-based system for automatic detection and classification of small bowel lesions during double-balloon enteroscopy examination.

BMC Gastroenterol. 2024-1-2

[6]
Enteroscopy versus Video Capsule Endoscopy for Automatic Diagnosis of Small Bowel Disorders-A Comparative Analysis of Artificial Intelligence Applications.

Biomedicines. 2023-11-7

本文引用的文献

[1]
Small-bowel capsule endoscopy and device-assisted enteroscopy for diagnosis and treatment of small-bowel disorders: European Society of Gastrointestinal Endoscopy (ESGE) Guideline - Update 2022.

Endoscopy. 2023-1

[2]
Artificial intelligence and colon capsule endoscopy: Automatic detection of ulcers and erosions using a convolutional neural network.

J Gastroenterol Hepatol. 2022-12

[3]
Artificial Intelligence and Device-Assisted Enteroscopy: Automatic Detection of Enteric Protruding Lesions Using a Convolutional Neural Network.

Clin Transl Gastroenterol. 2022-8-1

[4]
Automated detection of ulcers and erosions in capsule endoscopy images using a convolutional neural network.

Med Biol Eng Comput. 2022-3

[5]
Deep Learning and Device-Assisted Enteroscopy: Automatic Detection of Gastrointestinal Angioectasia.

Medicina (Kaunas). 2021-12-18

[6]
Real-time artificial intelligence for detecting focal lesions and diagnosing neoplasms of the stomach by white-light endoscopy (with videos).

Gastrointest Endosc. 2022-2

[7]
Artificial Intelligence in Gastroenterology-Walking into the Room of Little Miracles.

J Clin Med. 2020-11-16

[8]
Real-time artificial intelligence-based histologic classification of colorectal polyps with augmented visualization.

Gastrointest Endosc. 2021-3

[9]
Automatic detection of various abnormalities in capsule endoscopy videos by a deep learning-based system: a multicenter study.

Gastrointest Endosc. 2021-1

[10]
Efficacy of Real-Time Computer-Aided Detection of Colorectal Neoplasia in a Randomized Trial.

Gastroenterology. 2020-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索