Michalska-Foryszewska Anna, Rogowska Aleksandra, Kwiatkowska-Miernik Agnieszka, Sklinda Katarzyna, Mruk Bartosz, Hus Iwona, Walecki Jerzy
Radiological Diagnostics Center, The National Institute of Medicine of the Ministry of Interior and Administration, 02-507 Warsaw, Poland.
Hematology Clinic, The National Institute of Medicine of the Ministry of Interior and Administration, 02-507 Warsaw, Poland.
Cancers (Basel). 2024 Dec 7;16(23):4099. doi: 10.3390/cancers16234099.
Multiple myeloma (MM) is the second most prevalent hematologic malignancy, particularly affecting the elderly. The disease often begins with a premalignant phase known as monoclonal gammopathy of undetermined significance (MGUS), solitary plasmacytoma (SP) and smoldering multiple myeloma (SMM). Multiple imaging modalities are employed throughout the disease continuum to assess bone lesions, prevent complications, detect intra- and extramedullary disease, and evaluate the risk of neurological complications. The implementation of advanced imaging analysis techniques, including artificial intelligence (AI) and radiomics, holds great promise for enhancing our understanding of MM. The integration of advanced image analysis techniques which extract features from magnetic resonance imaging (MRI), computed tomography (CT), or positron emission tomography (PET) images has the potential to enhance the diagnostic accuracy for MM. This innovative approach may lead to the identification of imaging biomarkers that can predict disease prognosis and treatment outcomes. Further research and standardized evaluations are needed to define the role of radiomics in everyday clinical practice for patients with MM.
多发性骨髓瘤(MM)是第二常见的血液系统恶性肿瘤,尤其好发于老年人。该病通常始于一个癌前阶段,称为意义未明的单克隆丙种球蛋白病(MGUS)、孤立性浆细胞瘤(SP)和冒烟型多发性骨髓瘤(SMM)。在疾病的整个过程中,会采用多种成像方式来评估骨病变、预防并发症、检测髓内和髓外疾病以及评估神经并发症的风险。先进成像分析技术的应用,包括人工智能(AI)和放射组学,对于增进我们对MM的理解具有巨大潜力。从磁共振成像(MRI)、计算机断层扫描(CT)或正电子发射断层扫描(PET)图像中提取特征的先进图像分析技术的整合,有可能提高MM的诊断准确性。这种创新方法可能会导致识别出能够预测疾病预后和治疗结果的成像生物标志物。需要进一步的研究和标准化评估来确定放射组学在MM患者日常临床实践中的作用。