Wang Xiaobo, Kuang Guowen, Tian Hongmei, Shao Zhibin, Dong Ning, Lin Tao, Huang Li
Physics Laboratory, Industrial Training Center, Shenzhen Polytechnic University, Shenzhen 518055, China.
Institute of Applied Artificial Intelligence of the Guangdong-Hong Kong-Macao Greater Bay Area, Shenzhen Polytechnic University, Shenzhen 518055, China.
Nanomaterials (Basel). 2024 Nov 21;14(23):1868. doi: 10.3390/nano14231868.
Carbon nanorings (CNRs) serve as an ideal quantum system for novel electronic and magnetic properties. Although extensive theoretical studies utilizing molecular dynamics (MD) simulations have investigated the formation and structural characteristics of CNRs, systematically analyzing their properties across various toric sizes remains challenging due to the inherent complexity of this system. In this study, we introduce a novel finite element method, the Chebyshev-Ritz method, as an alternative approach to investigating the structural properties of CNRs. Previous MD simulations demonstrated that stable CNRs adopt a regular buckled shape at specific toric sizes. By meticulously selecting mechanical parameters, we observe that the critical deformation of a CNR with 50 repeated units, as determined by the Chebyshev-Ritz method, aligns with an MD simulation presenting a buckling number of 14. Additionally, the implementation of the Chebyshev-Ritz method with a constant mechanical parameter for 50 repeated units reveals a structural transition at varying toric sizes, leading to the stabilization of buckling numbers 13, 14, and 15. This structural transition across different buckling modes has also been corroborated by MD simulations. Our approach offers a reliable and accurate means of examining the structural properties of large-scale nanomaterials and paves the way for further exploration in nanoscale mechanics.
碳纳米环(CNRs)是具有新型电子和磁性特性的理想量子系统。尽管利用分子动力学(MD)模拟进行的广泛理论研究已经探究了碳纳米环的形成及其结构特征,但由于该系统固有的复杂性,系统地分析不同环面尺寸下碳纳米环的特性仍然具有挑战性。在本研究中,我们引入了一种新颖的有限元方法——切比雪夫-里兹法,作为研究碳纳米环结构特性的替代方法。先前的分子动力学模拟表明,稳定的碳纳米环在特定环面尺寸下会呈现出规则的弯曲形状。通过精心选择力学参数,我们观察到,用切比雪夫-里兹法确定的具有50个重复单元的碳纳米环的临界变形,与分子动力学模拟得出的屈曲数为14的结果一致。此外,对具有50个重复单元的碳纳米环采用恒定力学参数实施切比雪夫-里兹法,揭示了在不同环面尺寸下的结构转变,导致屈曲数稳定在13、14和15。分子动力学模拟也证实了这种跨越不同屈曲模式的结构转变。我们的方法为研究大规模纳米材料的结构特性提供了一种可靠且准确的手段,并为纳米尺度力学的进一步探索铺平了道路。