Suppr超能文献

恶劣环境下新一代玻璃纤维增强聚合物筋的短梁抗剪强度:试验研究与人工神经网络预测模型

Short-Beam Shear Strength of New-Generation Glass Fiber-Reinforced Polymer Bars Under Harsh Environment: Experimental Study and Artificial Neural Network Prediction Model.

作者信息

Al-Zahrani Mesfer M

机构信息

Civil and Environmental Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.

Interdisciplinary Research Center for Construction and Building Materials (IRC-CBM), King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.

出版信息

Polymers (Basel). 2024 Nov 29;16(23):3358. doi: 10.3390/polym16233358.

Abstract

In this study, the short-beam shear strength (SBSS) retention of two types of glass fiber-reinforced polymer (GFRP) bars-sand-coated (SG) and ribbed (RG)-was subjected to alkaline, acidic, and water conditions for up to 12 months under both high-temperature and ambient laboratory conditions. Comparative assessments were also performed on older-generation sand-coated (SG-O) and ribbed (RG-O1 and RG-O2) GFRP bars exposed to identical conditions. The results demonstrate that the new-generation GFRP bars, SG and RG, exhibited significantly better durability in harsh environments and exhibited SBSS retentions varying from 61 to 100% in SG and 90-98% in RG under the harshest conditions compared to 56-69% in SG-O, 71-80% in RG-O1, and 74-88% in RG-O2. Additionally, predictive models using both artificial neural networks (ANNs) and linear regression were developed to estimate the strength retention. The ANN model, with an of 0.95, outperformed the linear regression model ( = 0.76), highlighting its greater accuracy and suitability for predicting the SBSS of GFRP bars.

摘要

在本研究中,两种类型的玻璃纤维增强聚合物(GFRP)筋——砂涂层(SG)和带肋(RG)——的短梁抗剪强度(SBSS)保持率,在高温和实验室环境条件下,于碱性、酸性和水条件下长达12个月进行了测试。对暴露于相同条件下的老一代砂涂层(SG-O)和带肋(RG-O1和RG-O2)GFRP筋也进行了对比评估。结果表明,新一代GFRP筋SG和RG在恶劣环境中表现出显著更好的耐久性,在最恶劣条件下,SG的SBSS保持率为61%至100%,RG为90%至98%,相比之下,SG-O为56%至69%,RG-O1为71%至80%,RG-O2为74%至88%。此外,还开发了使用人工神经网络(ANN)和线性回归的预测模型来估计强度保持率。ANN模型的 为0.95,优于线性回归模型( = 0.76),突出了其在预测GFRP筋SBSS方面更高的准确性和适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4605/11644276/7050239acfbf/polymers-16-03358-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验