Suppr超能文献

玻璃纤维增强聚合物棒材在碱性和酸性环境中横向剪切强度保持率的代际进展

Generational Advancements in the Transverse Shear Strength Retention of Glass Fiber-Reinforced Polymer Bars in Alkaline and Acidic Environments.

作者信息

Al-Zahrani Mesfer M

机构信息

Civil and Environmental Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.

Interdisciplinary Research Center for Construction and Building Materials (IRC-CBM), King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.

出版信息

Polymers (Basel). 2024 Sep 25;16(19):2712. doi: 10.3390/polym16192712.

Abstract

In this study, the transverse shear strength (TSS) retention of two types of new-generation glass fiber-reinforced polymer (GFRP) bars, namely ribbed (RB) and sand-coated (SC) bars, was investigated under alkaline, acidic, and marine conditions in both high-temperature and laboratory environments for up to one year. The ribbed GFRP bars exhibited no notable reduction in strength under ambient conditions after 12 months, but under high-temperature conditions (60 °C), they showed TSS reductions of 10.6%, 9.7%, 11.1%, and 10.9% for exposure solutions E1, E2, E3, and E4, respectively. The sand-coated GFRP bars showed slight strength reductions under ambient conditions and moderate reductions under high-temperature conditions (60 °C), with TSS reductions of 22.5%, 29.0%, 13.0%, and 13.7% for the same solutions, highlighting the detrimental effect of high temperatures on the degradation of the resin matrix. Comparative analyses of older-generation ribbed (RB-O1 and RB-O2) and sand-coated (SC-O) GFRP bars exposed to similar conditioning solutions for the same duration were also performed. In addition, linear regression and artificial neural network (ANN) models were developed to predict strength retention. Models developed using linear regression and ANNs achieved coefficients of determination () of 0.69 and 0.94, respectively, indicating that the ANN model is a more robust tool for predicting the TSS of GFRP bars than is the conventional linear regression model.

摘要

在本研究中,对两种新一代玻璃纤维增强聚合物(GFRP)筋,即带肋(RB)筋和砂涂层(SC)筋,在高温和实验室环境下的碱性、酸性和海洋环境中长达一年的横向抗剪强度(TSS)保持率进行了研究。带肋GFRP筋在环境条件下12个月后强度无明显降低,但在高温条件(60°C)下,对于暴露溶液E1、E2、E3和E4,其TSS分别降低了10.6%、9.7%、11.1%和10.9%。砂涂层GFRP筋在环境条件下强度略有降低,在高温条件(60°C)下有适度降低,对于相同溶液,其TSS降低了22.5%、29.0%、13.0%和13.7%,突出了高温对树脂基体降解的有害影响。还对暴露于类似调节溶液相同持续时间的老一代带肋(RB - O1和RB - O2)和砂涂层(SC - O)GFRP筋进行了对比分析。此外,还开发了线性回归和人工神经网络(ANN)模型来预测强度保持率。使用线性回归和人工神经网络开发的模型分别获得了0.69和0.94的决定系数(),这表明人工神经网络模型比传统线性回归模型是一种更强大的预测GFRP筋TSS的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5042/11479162/c9e25307466f/polymers-16-02712-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验