文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

The Phytochemical Profile of the Petroleum Ether Extract of Leaves and Its Anticancer Effect on 4-(Methylnitrosamino)-1-(3-pyridyl)-1-buta-4 None (NNK)-Induced Lung Cancer in Rats.

作者信息

Abd Elkarim Asmaa S, Mohamed Safaa H, Ali Naglaa A, Elsayed Ghada H, Aly Mohamed S, Elgamal Abdelbaset M, Elsayed Wael M, El-Newary Samah A

机构信息

Chemistry of Tanning Materials and Leather Technology Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt.

Hormones Department, National Research Centre, 33 El-Bouhoths St., Dokki, Giza 12622, Egypt.

出版信息

Int J Mol Sci. 2024 Dec 4;25(23):13024. doi: 10.3390/ijms252313024.


DOI:10.3390/ijms252313024
PMID:39684736
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11641252/
Abstract

Lung cancer is a prevalent and very aggressive sickness that will likely claim 1.8 million lives by 2022, with an estimated 2.2 million additional cases expected worldwide. The goal of the current investigation was to determine whether petroleum ether extract of leaf could be used to treat lung cancer induced by 4-(Methylnitrosamino)-1-(3-pyridyl)-1-buta-4 none (NNK) in rats. In the in vitro extract recorded, promising anticancer effects in A540 cell lines with IC were close to the reference drug, doxorubicin (14.3 and 13.8 μg/mL, respectively). A dose of 500 mg/kg/day orally for 20 weeks exhibited recovery effects on NNK-induced lung cancer with a good safety margin, where Intercellular Adhesion Molecule-1 (ICAM-1), the lung cancer biomarker, was significantly reduced by about 18.75% compared to cancer control. exhibited many anticancer mechanisms, including (i) anti-proliferation as a significant reduction in Ki67 level (20.42%), (ii) anti-angiogenesis as evident by a considerable decrease in Matrix metalloproteinase-9 (MMP-9) expression (79%), (iii) anti-inflammation as a remarked decline in Insulin-like growth factor 1 (IGF-1) expression (62%), (iv) pro-apoptotic effect as a significant activation in Forkhead box protein O1 (FOXO1) expression (262%), and (v) anti-oxidation as remarkable activation on antioxidant biomarkers either non-enzymatic or enzymatic concurrent with considerable depletion on oxidative stress biomarker, in comparison to cancer control. The histopathological examination revealed that extract showed markedly improved tissue structure and reduced pathological changes across all examined organs caused by NNK. The anti-lung cancer effect exhibited by the extract may be linked to the active ingredients of the extract that were characterized by LC-MS, such as α-linolenic acid, linoleic acid, palmitic acid, β-sitosterol, and alkaloids (berberine and magnoflorine).

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e2b/11641252/71cbb66d095a/ijms-25-13024-sch006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e2b/11641252/f835414860d3/ijms-25-13024-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e2b/11641252/a3bec937e94c/ijms-25-13024-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e2b/11641252/13c02456e4ac/ijms-25-13024-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e2b/11641252/175f83d87c60/ijms-25-13024-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e2b/11641252/47d86aae88f0/ijms-25-13024-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e2b/11641252/5a00e49a4819/ijms-25-13024-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e2b/11641252/8112e9cd4beb/ijms-25-13024-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e2b/11641252/8d920b2b16b7/ijms-25-13024-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e2b/11641252/bed211eb8ea0/ijms-25-13024-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e2b/11641252/abcd2d3deca8/ijms-25-13024-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e2b/11641252/806a3a3416f0/ijms-25-13024-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e2b/11641252/cf414d63eec2/ijms-25-13024-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e2b/11641252/061125812983/ijms-25-13024-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e2b/11641252/25d5f292fcaf/ijms-25-13024-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e2b/11641252/958ba05f18d0/ijms-25-13024-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e2b/11641252/9a19526b0fbb/ijms-25-13024-sch002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e2b/11641252/2d925e02173e/ijms-25-13024-sch003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e2b/11641252/586caa332abe/ijms-25-13024-sch004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e2b/11641252/995f4fbfb31b/ijms-25-13024-sch005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e2b/11641252/71cbb66d095a/ijms-25-13024-sch006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e2b/11641252/f835414860d3/ijms-25-13024-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e2b/11641252/a3bec937e94c/ijms-25-13024-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e2b/11641252/13c02456e4ac/ijms-25-13024-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e2b/11641252/175f83d87c60/ijms-25-13024-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e2b/11641252/47d86aae88f0/ijms-25-13024-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e2b/11641252/5a00e49a4819/ijms-25-13024-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e2b/11641252/8112e9cd4beb/ijms-25-13024-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e2b/11641252/8d920b2b16b7/ijms-25-13024-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e2b/11641252/bed211eb8ea0/ijms-25-13024-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e2b/11641252/abcd2d3deca8/ijms-25-13024-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e2b/11641252/806a3a3416f0/ijms-25-13024-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e2b/11641252/cf414d63eec2/ijms-25-13024-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e2b/11641252/061125812983/ijms-25-13024-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e2b/11641252/25d5f292fcaf/ijms-25-13024-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e2b/11641252/958ba05f18d0/ijms-25-13024-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e2b/11641252/9a19526b0fbb/ijms-25-13024-sch002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e2b/11641252/2d925e02173e/ijms-25-13024-sch003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e2b/11641252/586caa332abe/ijms-25-13024-sch004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e2b/11641252/995f4fbfb31b/ijms-25-13024-sch005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e2b/11641252/71cbb66d095a/ijms-25-13024-sch006.jpg

相似文献

[1]
The Phytochemical Profile of the Petroleum Ether Extract of Leaves and Its Anticancer Effect on 4-(Methylnitrosamino)-1-(3-pyridyl)-1-buta-4 None (NNK)-Induced Lung Cancer in Rats.

Int J Mol Sci. 2024-12-4

[2]
Antioxidant, and Ovarian Anticancer Activity (Ovarian Cancer Cells-PA1) and Phytochemical Analysis of L. Ethanolic Extract.

Comb Chem High Throughput Screen. 2024

[3]
Verbascum gimgimense an Endemic Turkish Plant: Evaluation of In Vitro Anticancer, Antioxidant, Enzyme Inhibitory Activities, and Phytochemical Profile.

Cell Biochem Funct. 2024-12

[4]
Phytochemical Investigations and In Vitro Bioactivity Screening on Melia azedarach L. Leaves Extract from Nepal.

Chem Biodivers. 2021-5

[5]
Oldenlandia diffusa suppresses metastatic potential through inhibiting matrix metalloproteinase-9 and intercellular adhesion molecule-1 expression via p38 and ERK1/2 MAPK pathways and induces apoptosis in human breast cancer MCF-7 cells.

J Ethnopharmacol. 2017-1-4

[6]
Alangium longiflorum Merr. Leaf Extract Induces Apoptosis in A549 Lung Cancer Cells with Minimal NFκB Transcriptional Activation.

Asian Pac J Cancer Prev. 2020-8-1

[7]
Anti-breast cancer potential of Anonidium mannii (Oliv.) Engl. & Diels barks ethanolic extract: UPLC-ESI-QTOF-MS detection of anticancer alkaloids.

J Ethnopharmacol. 2021-8-10

[8]
Exploring the therapeutic potential of Pongamia pinnata plant extract against skin cancer: In-silico and in-vitro study.

J Ethnopharmacol. 2025-1-30

[9]
Extraction, fractionation and re-fractionation of Artemisia nilagirica for anticancer activity and HPLC-ESI-QTOF-MS/MS determination.

J Ethnopharmacol. 2018-3-1

[10]
Comparison of the Phytochemical Properties, Antioxidant Activity and Cytotoxic Effect on HepG2 Cells in Mongolian and Taiwanese Rhubarb Species.

Molecules. 2021-2-25

引用本文的文献

[1]
Targeted metabolomic profiling and antibacterial assessment of extracts from leaves, stems, and fruits of Egyptian L.

RSC Adv. 2025-5-27

本文引用的文献

[1]
Seed () Attenuates Chemically Induced Lung Carcinomas in Rats through Suppression of Proliferation and Angiogenesis.

Pharmaceuticals (Basel). 2024-8-27

[2]
Palmitic Acid Exerts Anti-Tumorigenic Activities by Modulating Cellular Stress and Lipid Droplet Formation in Endometrial Cancer.

Biomolecules. 2024-5-20

[3]
Four alkaloids from L. and their anti-inflammatory.

Nat Prod Res. 2024-5-13

[4]
Antioxidant Enzymes in Cancer Cells: Their Role in Photodynamic Therapy Resistance and Potential as Targets for Improved Treatment Outcomes.

Int J Mol Sci. 2024-3-9

[5]
The Antitumor Effects of α-Linolenic Acid.

J Pers Med. 2024-2-28

[6]
L. polysaccharide inhibits ovarian cancer via inducing ACSL4-dependent ferroptosis.

Aging (Albany NY). 2024-3-19

[7]
Enhancement of Female Rat Fertility via Ethanolic Extract from L. (Black Cumin) Seeds Assessed via HPLC-ESI-MS/MS and Molecular Docking.

Molecules. 2024-2-5

[8]
Phytochemical Characteristics and Anti-Inflammatory, Immunoregulatory, and Antioxidant Effects of L.: A Comprehensive Review.

Evid Based Complement Alternat Med. 2023-8-31

[9]
Molecular mechanism of palmitic acid and its derivatives in tumor progression.

Front Oncol. 2023-8-9

[10]
The global burden of lung cancer: current status and future trends.

Nat Rev Clin Oncol. 2023-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索