Guo Long, Zheng Chen, Chen Jiao, Du Ruifang, Li Fei
State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
Animal Nutrition Group, Wageningen University, 6700 AH Wageningen, The Netherlands.
Int J Mol Sci. 2024 Dec 6;25(23):13135. doi: 10.3390/ijms252313135.
Phenylalanine (Phe) is a potentially limiting amino acid for lactating cows. The mechanism by which Phe regulates milk protein synthesis remains unclear. The present study elucidates the mechanisms by which phenylalanine affects milk protein synthesis, amino acid utilization, and related signaling pathways in bovine mammary epithelial cells (BMECs). The BMECs were treated with five concentrations (0, 0.22, 0.44, 0.88, 1.76 mM, and serum free). Rapamycin inhibitors and RNA interference (RNAi) were used to inhibit the phosphorylation of the mammalian target of rapamycin (mTOR) signaling pathway and the expression of relevant amino acid transporters, respectively. The results showed that 4×Phe (0.88 mM) significantly increased ( < 0.05) both the mRNA and protein expression of α-casein (), β-casein (), and κ-casein (), as well as L-type amino acid transporter-1 () mRNA expression. Protein expression and modification assays of mTOR-related proteins showed that 4×Phe could increase ( < 0.05) the expression of α-casein and eukaryotic initiation factor 4E-binding protein-1 (4EBP1) and tended to increase the expression of ribosomal protein S6 protein kinase (S6K1, = 0.054). The general control nonderepressible 2 (GCN2) signaling pathway factor, eukaryotic initiation factor 2 (eIF2α), was downregulated by 4×Phe treatment ( < 0.05). The rapamycin inhibition test showed that Phe regulated casein synthesis via the mTOR signaling pathway. RNAi experiments showed that LAT1 mediated the entry of Phe into cells. Moreover, 4×Phe treatment tended to decrease (0.05 < < 0.10) the consumption of valine, leucine, histidine, tyrosine, cysteine, alanine, asparagine, and serine in the medium. Collectively, phenylalanine enhanced α-casein synthesis by regulating the phosphorylation of 4EBP1 and eIF2α and promoting the formation of the mTOR-centered casein translation initiation complex.
苯丙氨酸(Phe)是泌乳奶牛潜在的限制性氨基酸。Phe调节乳蛋白合成的机制尚不清楚。本研究阐明了苯丙氨酸影响牛乳腺上皮细胞(BMECs)中乳蛋白合成、氨基酸利用及相关信号通路的机制。将BMECs用五种浓度(0、0.22、0.44、0.88、1.76 mM,无血清)处理。分别使用雷帕霉素抑制剂和RNA干扰(RNAi)抑制雷帕霉素哺乳动物靶标(mTOR)信号通路的磷酸化和相关氨基酸转运体的表达。结果表明,4倍Phe(0.88 mM)显著增加(<0.05)α-酪蛋白()、β-酪蛋白()和κ-酪蛋白()的mRNA和蛋白表达,以及L型氨基酸转运体-1()mRNA表达。mTOR相关蛋白的蛋白表达和修饰分析表明,4倍Phe可增加(<0.05)α-酪蛋白和真核起始因子4E结合蛋白-1(4EBP1)的表达,并倾向于增加核糖体蛋白S6蛋白激酶(S6K1,=0.054)的表达。4倍Phe处理使一般控制非抑制性2(GCN2)信号通路因子真核起始因子2(eIF2α)下调(<0.05)。雷帕霉素抑制试验表明,Phe通过mTOR信号通路调节酪蛋白合成。RNAi实验表明,LAT1介导Phe进入细胞。此外,4倍Phe处理倾向于降低(0.05<<0.10)培养基中缬氨酸、亮氨酸、组氨酸、酪氨酸、半胱氨酸、丙氨酸、天冬酰胺和丝氨酸的消耗。总体而言,苯丙氨酸通过调节4EBP1和eIF2α的磷酸化并促进以mTOR为中心的酪蛋白翻译起始复合物的形成来增强α-酪蛋白合成。