Yeh Cheng-Hsien, Hsu Hung-Chieh, Tsao Jung-Che, Wu Hsuan-Ta, Lin Teh-Pei, Wu Chien-Te, Wu Shih-Hsiung, Shih Chuan-Feng
Department of Electrical Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
Applied High Entropy Technology (AHET) Center, National Cheng Kung University, Tainan 70101, Taiwan.
Materials (Basel). 2024 Nov 23;17(23):5739. doi: 10.3390/ma17235739.
Perovskite solar cells are among the most promising renewable energy devices, and enhancing their stability is crucial for commercialization. This research presents the use of L-Ergothioneine (L-EGT) as a passivation material in perovskite solar cells, strategically placed between the electron transport layer and the perovskite absorber layer to mitigate defect states at the heterojunction interface. Surface analysis reveals that introducing L-EGT passivation material significantly improves the quality of the perovskite film. X-ray diffraction analysis indicates that L-EGT slows down perovskite film degradation and successfully suppresses secondary phase formation. X-ray photoelectron spectroscopic analysis shows that oxygen vacancies in the lattice decrease from 29.21% to 15.81%, while Ti content increases from 70.75% to 79.15%, suggesting that L-EGT effectively passivates trap states at the interface between perovskite and TiO electron transport layer. The reduction of defects at the interface inhibits charge accumulation and lowers the device's internal series resistance, leading to improved overall performance. The study finds that the introduction of L-EGT significantly improves the fill factor and efficiency, with the power conversion efficiency (PCE) rising from 16.88% to 17.84%. After 720 h of aging, the PCE retains approximately 91%. The results demonstrate the significant impact of the amino acid L-EGT passivation material in suppressing interfacial defects and greatly improving the long-term stability of perovskite devices.
钙钛矿太阳能电池是最具前景的可再生能源设备之一,提高其稳定性对于商业化至关重要。本研究提出将L-麦角硫因(L-EGT)用作钙钛矿太阳能电池中的钝化材料,策略性地置于电子传输层和钙钛矿吸收层之间,以减轻异质结界面处的缺陷态。表面分析表明,引入L-EGT钝化材料可显著提高钙钛矿薄膜的质量。X射线衍射分析表明,L-EGT减缓了钙钛矿薄膜的降解,并成功抑制了次生相的形成。X射线光电子能谱分析表明,晶格中的氧空位从29.21%降至15.81%,而钛含量从70.75%增至79.15%,这表明L-EGT有效地钝化了钙钛矿与TiO电子传输层界面处的陷阱态。界面处缺陷的减少抑制了电荷积累,降低了器件的内部串联电阻,从而提高了整体性能。研究发现,引入L-EGT可显著提高填充因子和效率,功率转换效率(PCE)从16.88%提高到17.84%。老化720小时后,PCE保留约91%。结果表明,氨基酸L-EGT钝化材料在抑制界面缺陷和大大提高钙钛矿器件的长期稳定性方面具有显著影响。