Ziewiec Krzysztof, Błachowski Artur, Prusik Krystian, Jasiński Marcin, Ziewiec Aneta, Wojciechowska Mirosława
Institute of Technology, University of the National Education Commission (UKEN), ul. Podchorążych 2, 30-084 Krakow, Poland.
AGH University of Krakow, Faculty of Geology, Geophysics and Environmental Protection, al. A. Mickiewicza 30, 30-059 Krakow, Poland.
Materials (Basel). 2024 Nov 25;17(23):5772. doi: 10.3390/ma17235772.
This study investigates the influence of cooling rates on the microstructure and phase transformations of the high-entropy alloy CrMnFeCoNiP. The alloy was synthesized via arc melting and subjected to three cooling conditions: slow cooling (52 K/s), accelerated cooling after a short electric arc pulse (3018 K/s), and rapid quenching (10⁵-10⁶ K/s) using the melt-spinning method. The microstructures were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Mössbauer spectroscopy. The thermal properties and phase transformations were analyzed using differential scanning calorimetry (DSC) and thermography. Slow cooling produced a complex crystalline microstructure, while accelerated cooling resulted in fewer phases. Rapid cooling yielded an amorphous structure, demonstrating that phosphorus and high mixing entropy enhance glass-forming ability. Phase transformations exhibited significant undercooling under accelerated cooling, with FCC phase crystallization shifting from 1706 K (slow cooling) to 1341 K, and eutectic crystallization from 1206 K to 960 K. These findings provide a foundation for optimizing cooling processes in high-entropy alloys for advanced structural and functional applications.
本研究调查了冷却速率对高熵合金CrMnFeCoNiP微观结构和相变的影响。该合金通过电弧熔炼合成,并采用三种冷却条件:缓慢冷却(52 K/s)、短电弧脉冲后的加速冷却(3018 K/s)以及使用熔体纺丝法进行的快速淬火(10⁵ - 10⁶ K/s)。使用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和穆斯堡尔谱对微观结构进行了表征。使用差示扫描量热法(DSC)和热成像分析了热性能和相变。缓慢冷却产生了复杂的晶体微观结构,而加速冷却导致相的数量减少。快速冷却产生了非晶结构,表明磷和高混合熵增强了玻璃形成能力。在加速冷却下,相变表现出显著的过冷现象,面心立方(FCC)相结晶温度从1706 K(缓慢冷却)转变为1341 K,共晶结晶温度从1206 K转变为960 K。这些发现为优化高熵合金的冷却工艺以用于先进的结构和功能应用提供了基础。