Suppr超能文献

CrMnFeCoNi与铁异种焊接接头的形成、微观结构及性能

Formation, Microstructure, and Properties of Dissimilar Welded Joint between CrMnFeCoNi and Fe.

作者信息

Ziewiec Krzysztof, Błachowski Artur, Kąc Sławomir, Ziewiec Aneta

机构信息

Institute of Technology, Faculty of Mathematics, Physics and Technical Science, Pedagogical University of Cracow, ul. Podchorążych 2, 30-084 Krakow, Poland.

AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, al. Mickiewicza 30, 30-059 Krakow, Poland.

出版信息

Materials (Basel). 2023 Jul 24;16(14):5187. doi: 10.3390/ma16145187.

Abstract

This research explores the welding process of a high-entropy CrMnFeCoNi alloy with iron, unraveling the intricate chemical compositions that materialize in distinct regions of the weld joint. A mid-wave infrared thermal camera was deployed to monitor the cooling sequences during welding. A thorough analysis of the metallographic sample from the weld joint, along with measurements taken using a nano-hardness indenter, provided insights into the hardness and Young's modulus. The element distribution across the weld joint was assessed using a scanning electron microscope equipped with an EDS spectrometer. Advanced techniques such as X-ray diffraction and Mössbauer spectroscopy underscored the prevalence of the martensitic phase within the weld joint, accompanied by the presence of bcc (iron) and fcc phases. In contrast, Young's modulus in the base metal areas displayed typical values for a high-entropy alloy (202 GPa) and iron (204 GPa). The weld joint material displayed substantial chemical heterogeneity, leading to noticeable concentration gradients of individual elements. The higher hardness noted in the weld (up to 420 HV), when compared to the base metal regions (up to 290 HV for CrMnFeCoNi alloy and approximately 150 HV for iron), can be ascribed to the dominance of the martensitic phase. These findings provide valuable insights for scenarios involving diverse welded joints containing high-entropy alloys, contributing to our understanding of materials engineering.

摘要

本研究探索了高熵CrMnFeCoNi合金与铁的焊接过程,揭示了在焊接接头不同区域形成的复杂化学成分。使用中波红外热像仪监测焊接过程中的冷却顺序。对焊接接头的金相样品进行了全面分析,并使用纳米硬度压头进行测量,从而深入了解了硬度和杨氏模量。使用配备能谱仪的扫描电子显微镜评估了整个焊接接头的元素分布。X射线衍射和穆斯堡尔谱等先进技术强调了焊接接头中马氏体相的普遍存在,同时还存在体心立方(铁)相和面心立方相。相比之下,母材区域的杨氏模量显示出高熵合金(202吉帕)和铁(204吉帕)的典型值。焊接接头材料表现出显著的化学不均匀性,导致各元素出现明显的浓度梯度。与母材区域(CrMnFeCoNi合金最高达290维氏硬度,铁约为150维氏硬度)相比,焊接处较高的硬度(最高达420维氏硬度)可归因于马氏体相的主导地位。这些发现为涉及含高熵合金的各种焊接接头的情况提供了有价值的见解,有助于我们对材料工程的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a876/10384912/6475183f0918/materials-16-05187-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验