Nsoh Bryan, Katimbo Abia, Guo Hongzhi, Heeren Derek M, Nakabuye Hope Njuki, Qiao Xin, Ge Yufeng, Rudnick Daran R, Wanyama Joshua, Bwambale Erion, Kiraga Shafik
Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
West Central Research, Extension, and Education Center, University of Nebraska-Lincoln, North Platte, NE 69101, USA.
Sensors (Basel). 2024 Nov 23;24(23):7480. doi: 10.3390/s24237480.
This systematic review critically evaluates the current state and future potential of real-time, end-to-end smart, and automated irrigation management systems, focusing on integrating the Internet of Things (IoTs) and machine learning technologies for enhanced agricultural water use efficiency and crop productivity. In this review, the automation of each component is examined in the irrigation management pipeline from data collection to application while analyzing its effectiveness, efficiency, and integration with various precision agriculture technologies. It also investigates the role of the interoperability, standardization, and cybersecurity of IoT-based automated solutions for irrigation applications. Furthermore, in this review, the existing gaps are identified and solutions are proposed for seamless integration across multiple sensor suites for automated systems, aiming to achieve fully autonomous and scalable irrigation management. The findings highlight the transformative potential of automated irrigation systems to address global food challenges by optimizing water use and maximizing crop yields.
本系统综述批判性地评估了实时、端到端智能和自动化灌溉管理系统的现状及未来潜力,重点关注整合物联网(IoT)和机器学习技术以提高农业用水效率和作物生产力。在本综述中,从数据收集到应用的灌溉管理流程中,对每个组件的自动化进行了研究,同时分析其有效性、效率以及与各种精准农业技术的整合情况。它还调查了基于物联网的自动化灌溉解决方案的互操作性、标准化和网络安全的作用。此外,在本综述中,确定了现有差距,并针对自动化系统跨多个传感器套件的无缝集成提出了解决方案,旨在实现完全自主和可扩展的灌溉管理。研究结果凸显了自动化灌溉系统通过优化用水和最大化作物产量来应对全球粮食挑战的变革潜力。