Suppr超能文献

MGL-YOLO:一种轻量级条形码目标检测算法。

MGL-YOLO: A Lightweight Barcode Target Detection Algorithm.

作者信息

Qu Yuanhao, Zhang Fengshou

机构信息

School of Mechatronics Engineering, Henan University of Science and Technology, Luoyang 471003, China.

出版信息

Sensors (Basel). 2024 Nov 27;24(23):7590. doi: 10.3390/s24237590.

Abstract

Due to the critical importance of one-dimensional barcode detection in logistics, retail, and manufacturing, which has become a key issue affecting operational efficiency, researchers have shown increasing interest in this area. However, deploying deep convolutional neural networks on embedded and some edge devices is very challenging due to limited storage space and computational resources. To address this issue, this paper proposes MGL-YOLO, a lightweight one-dimensional barcode detection network based on an improved YOLOv8, which aims to achieve a high detection accuracy at low computational cost. First, a new multi-scale group convolution (MSGConv) is designed and integrated into the C2f module to construct the MSG-C2f feature extraction module. By replacing the C2f module in the P5 layer of the backbone network, the ability to extract multi-scale feature information is enhanced. Secondly, a feature extraction module, Group RepConv Cross Stage Partial Efficient Long-Range Attention Network (GRCE), is designed to optimize the feature extraction capability of the C2f modules in the neck section, offering significant advantages in multi-scale characteristics and complexity adjustment. Finally, a Lightweight Shared Multi-Scale Detection Head (LSMD) is proposed, which improves the model's detection accuracy and adaptability while reducing the model's parameter size and computational complexity. Experimental results show that the proposed algorithm increases MAP50 and MAP50.95 by 2.57% and 2.31%, respectively, compared to YOLOv8, while reducing parameter size and computational cost by 36.21% and 34.15%, respectively. Moreover, it also demonstrates advantages in average precision compared to other object detection networks, proving the effectiveness of MGL-YOLO for one-dimensional barcode detection in complex backgrounds.

摘要

由于一维条形码检测在物流、零售和制造业中至关重要,已成为影响运营效率的关键问题,研究人员对该领域的兴趣日益浓厚。然而,由于存储空间和计算资源有限,在嵌入式设备和一些边缘设备上部署深度卷积神经网络极具挑战性。为解决这一问题,本文提出了MGL-YOLO,一种基于改进的YOLOv8的轻量级一维条形码检测网络,旨在以低计算成本实现高检测精度。首先,设计了一种新的多尺度组卷积(MSGConv)并将其集成到C2f模块中,构建了MSG-C2f特征提取模块。通过替换主干网络P5层中的C2f模块,增强了提取多尺度特征信息的能力。其次,设计了一个特征提取模块,即组重复卷积跨阶段部分高效长距离注意力网络(GRCE),以优化颈部部分C2f模块的特征提取能力,在多尺度特征和复杂度调整方面具有显著优势。最后,提出了一种轻量级共享多尺度检测头(LSMD),在降低模型参数规模和计算复杂度的同时提高了模型的检测精度和适应性。实验结果表明,与YOLOv8相比,该算法的MAP50和MAP50.95分别提高了2.57%和2.31%,而参数规模和计算成本分别降低了36.21%和34.15%。此外,与其他目标检测网络相比,它在平均精度方面也表现出优势,证明了MGL-YOLO在复杂背景下进行一维条形码检测的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39d9/11644706/6a50fb62871f/sensors-24-07590-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验