Suppr超能文献

MACNet:一种基于多维注意力的卷积神经网络,用于下肢运动想象分类。

MACNet: A Multidimensional Attention-Based Convolutional Neural Network for Lower-Limb Motor Imagery Classification.

作者信息

Li Ling-Long, Cao Guang-Zhong, Zhang Yue-Peng, Li Wan-Chen, Cui Fang

机构信息

Guangdong Key Laboratory of Electromagnetic Control and Intelligent Robots, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China.

Shenzhen Institute of Information Technology, Shenzhen 518172, China.

出版信息

Sensors (Basel). 2024 Nov 28;24(23):7611. doi: 10.3390/s24237611.

Abstract

Decoding lower-limb motor imagery (MI) is highly important in brain-computer interfaces (BCIs) and rehabilitation engineering. However, it is challenging to classify lower-limb MI from electroencephalogram (EEG) signals, because lower-limb motions (LLMs) including MI are excessively close to physiological representations in the human brain and generate low-quality EEG signals. To address this challenge, this paper proposes a multidimensional attention-based convolutional neural network (CNN), termed MACNet, which is specifically designed for lower-limb MI classification. MACNet integrates a temporal refining module and an attention-enhanced convolutional module by leveraging the local and global feature representation abilities of CNNs and attention mechanisms. The temporal refining module adaptively investigates critical information from each electrode channel to refine EEG signals along the temporal dimension. The attention-enhanced convolutional module extracts temporal and spatial features while refining the feature maps across the channel and spatial dimensions. Owing to the scarcity of public datasets available for lower-limb MI, a specified lower-limb MI dataset involving four routine LLMs is built, consisting of 10 subjects over 20 sessions. Comparison experiments and ablation studies are conducted on this dataset and a public BCI Competition IV 2a EEG dataset. The experimental results show that MACNet achieves state-of-the-art performance and outperforms alternative models for the subject-specific mode. Visualization analysis reveals the excellent feature learning capabilities of MACNet and the potential relationship between lower-limb MI and brain activity. The effectiveness and generalizability of MACNet are verified.

摘要

在脑机接口(BCI)和康复工程中,解码下肢运动想象(MI)至关重要。然而,从脑电图(EEG)信号中对下肢MI进行分类具有挑战性,因为包括MI在内的下肢运动(LLM)与人类大脑中的生理表征过于接近,并且会产生低质量的EEG信号。为应对这一挑战,本文提出了一种基于多维注意力的卷积神经网络(CNN),称为MACNet,它是专门为下肢MI分类而设计的。MACNet通过利用CNN和注意力机制的局部和全局特征表示能力,集成了一个时间细化模块和一个注意力增强卷积模块。时间细化模块自适应地研究每个电极通道的关键信息,以沿时间维度细化EEG信号。注意力增强卷积模块在跨通道和空间维度细化特征图的同时提取时间和空间特征。由于可用于下肢MI的公共数据集稀缺,构建了一个包含四个常规LLM的特定下肢MI数据集,由10名受试者在20个会话中组成。在该数据集和公共BCI竞赛IV 2a EEG数据集上进行了比较实验和消融研究。实验结果表明,MACNet实现了最先进的性能,并且在特定受试者模式下优于替代模型。可视化分析揭示了MACNet出色的特征学习能力以及下肢MI与大脑活动之间的潜在关系。验证了MACNet的有效性和通用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1a2/11644704/8f2ad11fd0fc/sensors-24-07611-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验