Suppr超能文献

机器人辅助腹腔镜手术中人体工程学参数的相关性研究与预测建模

Correlation Study and Predictive Modelling of Ergonomic Parameters in Robotic-Assisted Laparoscopic Surgery.

作者信息

Pérez-Salazar Manuel J, Caballero Daniel, Sánchez-Margallo Juan A, Sánchez-Margallo Francisco M

机构信息

Bioengineering and Health Technologies Unit, Jesús Usón Minimally Invasive Surgery Centre, ES-10071 Cáceres, Spain.

Scientific Direction, Jesús Usón Minimally Invasive Surgery Centre, ES-10071 Cáceres, Spain.

出版信息

Sensors (Basel). 2024 Dec 3;24(23):7721. doi: 10.3390/s24237721.

Abstract

BACKGROUND

This study aims to continue research on the objective analysis of ergonomic conditions in robotic-assisted surgery (RAS), seeking innovative solutions for the analysis and prevention of ergonomic problems in surgical practice.

METHODS

Four different robotic-assisted tasks were performed by groups of surgeons with different surgical experiences. Different wearable technologies were used to record surgeons' posture and muscle activity during surgical practice, for which the correlation between them was analyzed. A predictive model was generated for each task based on the surgeons' level of experience and type of surgery. Two preprocessing techniques (scaling and normalization) and two artificial intelligence techniques were tested.

RESULTS

Overall, a positive correlation between prolonged maintenance of an ergonomically inadequate posture during RAS and increased accumulated muscle activation was found. Novice surgeons showed improved posture when performing RAS compared to expert surgeons. The predictive model obtained high accuracy for cutting, peg transfer, and labyrinth tasks.

CONCLUSIONS

This study expands on the existing ergonomic analysis of the lead surgeon during RAS and develops predictive models for future prevention of ergonomic risk situations. Both posture and muscle loading are highly related to the surgeon's previous experience.

摘要

背景

本研究旨在继续对机器人辅助手术(RAS)中的人体工程学状况进行客观分析,寻求分析和预防手术实践中人体工程学问题的创新解决方案。

方法

具有不同手术经验的外科医生团队执行了四项不同的机器人辅助任务。使用不同的可穿戴技术记录外科医生在手术过程中的姿势和肌肉活动,并分析它们之间的相关性。根据外科医生的经验水平和手术类型,为每个任务生成了一个预测模型。测试了两种预处理技术(缩放和归一化)以及两种人工智能技术。

结果

总体而言,发现机器人辅助手术期间长时间保持不符合人体工程学的姿势与累积肌肉激活增加之间存在正相关。与专家外科医生相比,新手外科医生在进行机器人辅助手术时姿势有所改善。预测模型在切割、钉转移和迷宫任务中获得了高精度。

结论

本研究扩展了对机器人辅助手术中主刀医生现有的人体工程学分析,并开发了预测模型以预防未来的人体工程学风险情况。姿势和肌肉负荷都与外科医生以前的经验高度相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d285/11644984/38c0b2ef4b85/sensors-24-07721-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验