Hosseini Iman, Ghahramani Maryam
School of Computing, Australian National University, Acton, ACT 2601, Australia.
Human-Centred Technology Research Centre, University of Canberra, Bruce, ACT 2617, Australia.
Sensors (Basel). 2024 Dec 3;24(23):7727. doi: 10.3390/s24237727.
Locomotive syndrome (LS) refers to a condition where individuals face challenges in performing activities of daily living. Early detection of such deterioration is crucial to reduce the need for nursing care. The Geriatric Locomotive Function Scale (GLFS-25), a 25-question assessment, has been proposed for categorizing individuals into different stages of LS. However, its subjectivity has prompted interest in technology-based quantitative assessments. In this study, we utilized machine learning and an instrumented five-time sit-to-stand test (FTSTS) to assess LS stages. Younger and older participants were recruited, with older individuals classified into LS stages 0-2 based on their GLFS-25 scores. Equipped with a single inertial measurement unit at the pelvis level, participants performed the FTSTS. Using acceleration data, 144 features were extracted, and seven distinct machine learning models were developed using the features. Remarkably, the multilayer perceptron (MLP) model demonstrated superior performance. Following data augmentation and principal component analysis (PCA), the MLP+PCA model achieved an accuracy of 0.9, a precision of 0.92, a recall of 0.9, and an F1 score of 0.91. This underscores the efficacy of the approach for LS assessment. This study lays the foundation for the future development of a remote LS assessment system using commonplace devices like smartphones.
运动机能不全综合征(LS)是指个体在进行日常生活活动时面临挑战的一种状况。尽早发现这种机能衰退对于减少护理需求至关重要。老年运动机能量表(GLFS - 25)是一项包含25个问题的评估工具,已被用于将个体分类到LS的不同阶段。然而,其主观性引发了人们对基于技术的定量评估的兴趣。在本研究中,我们利用机器学习和仪器化五次坐立试验(FTSTS)来评估LS阶段。招募了年轻和年长的参与者,年长个体根据其GLFS - 25得分被分类到LS的0 - 2阶段。参与者在骨盆水平配备单个惯性测量单元进行FTSTS。利用加速度数据提取了144个特征,并使用这些特征开发了七种不同的机器学习模型。值得注意的是,多层感知器(MLP)模型表现出卓越的性能。经过数据增强和主成分分析(PCA)后,MLP + PCA模型的准确率达到0.9,精确率为0.92,召回率为0.9,F1分数为0.91。这突出了该方法在LS评估中的有效性。本研究为未来使用智能手机等常见设备开发远程LS评估系统奠定了基础。