Saha Utsha, Saha Binita, Imran Md Ashique
Department of Computer Science, North Dakota State University, Fargo, ND 58105, USA.
Applied Computer Science, University of Winnipeg, Winnipeg, MB R3B2E9, Canada.
Sensors (Basel). 2024 Dec 8;24(23):7841. doi: 10.3390/s24237841.
Automatic License Plate Recognition (ALPR) systems are essential for Intelligent Transport Systems (ITS), effective transportation management, security, law enforcement, etc. However, the performance of ALPR systems can be significantly affected by environmental conditions such as heavy rain, fog, and pollution. This paper introduces a weather-adaptive Convolutional Neural Network (CNN) framework that leverages the YOLOv10 model that is designed to enhance license plate detection in adverse weather conditions. By incorporating weather-specific data augmentation techniques, our framework improves the robustness of ALPR systems under diverse environmental scenarios. We evaluate the effectiveness of this approach using metrics such as precision, recall, F1, mAP50, and mAP50-95 score across various model configurations and augmentation strategies. The results demonstrate a significant improvement in overall detection performance, particularly in challenging weather conditions. This study provides a promising solution for deploying resilient ALPR systems in regions with similar environmental complexities.
自动车牌识别(ALPR)系统对于智能交通系统(ITS)、有效的交通管理、安全和执法等至关重要。然而,ALPR系统的性能可能会受到暴雨、大雾和污染等环境条件的显著影响。本文介绍了一种天气自适应卷积神经网络(CNN)框架,该框架利用YOLOv10模型,旨在增强恶劣天气条件下的车牌检测。通过纳入特定于天气的数据增强技术,我们的框架提高了ALPR系统在各种环境场景下的鲁棒性。我们使用精度、召回率、F1、mAP50和mAP50-95分数等指标,在各种模型配置和增强策略下评估了这种方法的有效性。结果表明,整体检测性能有显著提高,特别是在具有挑战性的天气条件下。本研究为在具有类似环境复杂性的地区部署弹性ALPR系统提供了一个有前景的解决方案。