Department of Computer Science and Engineering, Jamia Hamdard, New Delhi 110062, India.
Department of Computer Science, University of Bari, 70125 Bari, Italy.
Sensors (Basel). 2022 Jul 14;22(14):5283. doi: 10.3390/s22145283.
With the rapid development of deep learning techniques, new innovative license plate recognition systems have gained considerable attention from researchers all over the world. These systems have numerous applications, such as law enforcement, parking lot management, toll terminals, traffic regulation, etc. At present, most of these systems rely heavily on high-end computing resources. This paper proposes a novel memory and time-efficient automatic license plate recognition (ALPR) system developed using YOLOv5. This approach is ideal for IoT devices that usually have less memory and processing power. Our approach incorporates two stages, i.e., using a custom transfer learned model for license plate detection and an LSTM-based OCR engine for recognition. The dataset that we used for this research was our dataset consisting of images from the Google open images dataset and the Indian License plate dataset. Along with training YOLOv5 models, we also trained YOLOv4 models on the same dataset to illustrate the size and performance-wise comparison. Our proposed ALPR system results in a 14 megabytes model with a mean average precision of 87.2% and 4.8 ms testing time on still images using Nvidia T4 GPU. The complete system with detection and recognition on the other hand takes about 85 milliseconds.
随着深度学习技术的飞速发展,新的创新型车牌识别系统引起了全球研究人员的广泛关注。这些系统有许多应用,例如执法、停车场管理、收费终端、交通规则等。目前,这些系统大多严重依赖高端计算资源。本文提出了一种使用 YOLOv5 开发的新颖的内存和时间高效的自动车牌识别 (ALPR) 系统。这种方法非常适合通常内存和处理能力较小的物联网设备。我们的方法包含两个阶段,即使用定制的迁移学习模型进行车牌检测和基于 LSTM 的 OCR 引擎进行识别。我们用于这项研究的数据集是由来自 Google 开放图像数据集和印度车牌数据集的图像组成的数据集。除了训练 YOLOv5 模型外,我们还在同一数据集上训练了 YOLOv4 模型,以说明大小和性能方面的比较。我们提出的 ALPR 系统在使用 Nvidia T4 GPU 的情况下,在静态图像上的平均精度为 87.2%,测试时间为 4.8 毫秒,模型大小为 14 兆字节。另一方面,带有检测和识别功能的完整系统需要大约 85 毫秒。