Suppr超能文献

利用数据同化改进低成本传感器的校准

Improving the Calibration of Low-Cost Sensors Using Data Assimilation.

作者信息

Aranda Britez Diego Alberto, Tapia Córdoba Alejandro, Johnson Princy, Pacheco Viana Erid Eulogio, Millán Gata Pablo

机构信息

Department of Engineering, Universidad Loyola Andalucía, Avda. de las Universidades, s/n, Dos Hermanas, 41704 Seville, Spain.

School of Engineering, Liverpool John Moores University, Liverpool L3 3AF, UK.

出版信息

Sensors (Basel). 2024 Dec 8;24(23):7846. doi: 10.3390/s24237846.

Abstract

In the context of smart agriculture, accurate soil moisture monitoring is crucial to optimise irrigation, improve water usage efficiency and increase crop yields. Although low-cost capacitive sensors are used to make monitoring affordable, these sensors face accuracy challenges that often result in inefficient irrigation practices. This paper presents a method for calibrating capacitive soil moisture sensors through data assimilation. The method was validated using data collected from a farm in Dos Hermanas, Seville, Spain, which utilises a drip irrigation system. The proposed solution integrates the Hydrus 1D model with particle filter (PF) and the Iterative Ensemble Smoother (IES) to continuously update and refine the model and sensor calibration parameters. The methodology includes the implementation of physical constraints, ensuring that the updated parameters remain within physically plausible ranges. Soil moisture was measured using low-cost SoilWatch 10 capacitive sensors and ThetaProbe ML3 high-precision sensors as a reference. Furthermore, a comparison was carried out between the PF and IES methods. The results demonstrate that the data assimilation approach markedly enhances the precision of sensor readings, aligning them closely with reference measurements and model simulations. The PF method demonstrated superior performance, achieving an 84.8% improvement in accuracy compared to the raw sensor readings. This substantial improvement was measured against high-precision reference sensors, confirming the effectiveness of the PF method in calibrating low-cost capacitive sensors. In contrast, the IES method showed a 68% improvement in accuracy, which, while still considerable, was outperformed by the PF. By effectively mitigating observation noise and sensor biases, this approach proves robust and practical for large-scale implementations in precision agriculture.

摘要

在智慧农业背景下,精确的土壤湿度监测对于优化灌溉、提高用水效率和增加作物产量至关重要。尽管使用低成本电容式传感器可使监测变得经济可行,但这些传感器面临精度挑战,常常导致灌溉实践效率低下。本文提出一种通过数据同化校准电容式土壤湿度传感器的方法。该方法利用从西班牙塞维利亚多斯赫尔马纳斯的一个农场收集的数据进行了验证,该农场采用滴灌系统。所提出的解决方案将Hydrus 1D模型与粒子滤波器(PF)和迭代集合平滑器(IES)相结合,以持续更新和完善模型及传感器校准参数。该方法包括实施物理约束,确保更新后的参数保持在物理上合理的范围内。使用低成本的SoilWatch 10电容式传感器和ThetaProbe ML3高精度传感器作为参考来测量土壤湿度。此外,还对PF和IES方法进行了比较。结果表明,数据同化方法显著提高了传感器读数的精度,使其与参考测量值和模型模拟结果紧密对齐。PF方法表现出卓越的性能,与原始传感器读数相比,精度提高了84.8%。这一显著提高是相对于高精度参考传感器测量得出的,证实了PF方法在校准低成本电容式传感器方面的有效性。相比之下,IES方法的精度提高了68%,虽然仍然可观,但不如PF方法。通过有效减轻观测噪声和传感器偏差,该方法在精准农业的大规模实施中被证明是稳健且实用的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验